These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 14674583)

  • 1. Energization of Comamonas testosteroni ATCC 17454 for indicating toxic effects of chlorophenoxy herbicides.
    Loffhagen N; Härtig C; Babel W
    Arch Environ Contam Toxicol; 2003 Oct; 45(3):317-23. PubMed ID: 14674583
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pseudomonas putida KT2440 responds specifically to chlorophenoxy herbicides and their initial metabolites.
    Benndorf D; Thiersch M; Loffhagen N; Kunath C; Harms H
    Proteomics; 2006 Jun; 6(11):3319-29. PubMed ID: 16637006
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of membrane fatty acid composition on the uncoupling sensitivity of the energy conservation of Comamonas testosteroni ATCC 17454.
    Loffhagen N; Härtig C; Harms H
    Appl Microbiol Biotechnol; 2006 May; 70(5):618-24. PubMed ID: 16133339
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of catabolic enzymes during long-term exposure of Delftia acidovorans MC1 to chlorophenoxy herbicides.
    Benndorf D; Davidson I; Babel W
    Microbiology (Reading); 2004 Apr; 150(Pt 4):1005-1014. PubMed ID: 15073309
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The glucose dehydrogenase-mediated energization of Acinetobacter calcoaceticus as a tool for evaluating its susceptibility to, and defence against, hazardous chemicals.
    Loffhagen N; Härtig C; Babel W
    Appl Microbiol Biotechnol; 1995 Jan; 42(5):738-43. PubMed ID: 7765916
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The toxicity of substituted phenolic compounds to a detoxifying and an acetic acid bacterium.
    Loffhagen N; Härtig C; Babel W
    Ecotoxicol Environ Saf; 1997 Apr; 36(3):269-74. PubMed ID: 9143455
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Isolation and partial characterization of extracellular NADPH-dependent phenol hydroxylase oxidizing phenol to catechol in Comamonas testosteroni.
    Turek M; Vilimkova L; Kremlackova V; Paca J; Halecky M; Paca J; Stiborova M
    Neuro Endocrinol Lett; 2011; 32 Suppl 1():137-45. PubMed ID: 22167219
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comamonas acidovorans strain MC1: a new isolate capable of degrading the chiral herbicides dichlorprop and mecoprop and the herbicides 2,4-D and MCPA.
    Müller RH; Jorks S; Kleinsteuber S; Babel W
    Microbiol Res; 1999 Dec; 154(3):241-6. PubMed ID: 10652787
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of 3,17β-hydroxysteroid dehydrogenase in Comamonas testosteroni.
    Yu Y; Liu C; Wang B; Li Y; Zhang H
    Chem Biol Interact; 2015 Jun; 234():221-8. PubMed ID: 25595227
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 2,4-Dichlorophenoxyacetic acid (2,4-D) utilization by Delftia acidovorans MC1 at alkaline pH and in the presence of dichlorprop is improved by introduction of the tfdK gene.
    Hoffmann D; Müller RH
    Biodegradation; 2006 Jun; 17(3):263-73. PubMed ID: 16715405
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Delftia acidovorans MC1 resists high herbicide concentrations--a study of nutristat growth on (RS)-2-(2,4-Dichlorophenoxy)propionate and 2,4-dichlorophenoxyacetate.
    Müller RH; Babel W
    Biosci Biotechnol Biochem; 2004 Mar; 68(3):622-30. PubMed ID: 15056896
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cloning and characterization of a novel β-ketoacyl-ACP reductase from Comamonas testosteroni.
    Zhang H; Ji Y; Wang Y; Zhang X; Yu Y
    Chem Biol Interact; 2015 Jun; 234():213-20. PubMed ID: 25595225
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of uncoupling activities of chlorophenoxy herbicides in rat liver mitochondria.
    Zychlinski L; Zolnierowicz S
    Toxicol Lett; 1990 Jun; 52(1):25-34. PubMed ID: 2356568
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cloning, expression and characterization of a putative 7alpha-hydroxysteroid dehydrogenase in Comamonas testosteroni.
    Ji W; Chen Y; Zhang H; Zhang X; Li Z; Yu Y
    Microbiol Res; 2014; 169(2-3):148-54. PubMed ID: 23972763
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cloning, expression and characterization of a putative 2,5-diketo-D-gluconic acid reductase in Comamonas testosteroni.
    Chen Y; Ji W; Zhang H; Zhang X; Yu Y
    Chem Biol Interact; 2015 Jun; 234():229-35. PubMed ID: 25614138
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cloning, expression and characterization of a novel short-chain dehydrogenase/reductase (SDRx) in Comamonas testosteroni.
    Gong W; Xiong G; Maser E
    J Steroid Biochem Mol Biol; 2012 Mar; 129(1-2):15-21. PubMed ID: 21111045
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thiols metabolism is altered by the herbicides paraquat, dinoseb and 2,4-D: a study in isolated hepatocytes.
    Palmeira CM; Moreno AJ; Madeira VM
    Toxicol Lett; 1995 Nov; 81(2-3):115-23. PubMed ID: 8553365
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 3alpha-Hydroxysteroid dehydrogenase/carbonyl reductase from Comamonas testosteroni: biological significance, three-dimensional structure and gene regulation.
    Maser E; Xiong G; Grimm C; Ficner R; Reuter K
    Chem Biol Interact; 2001 Jan; 130-132(1-3):707-22. PubMed ID: 11306088
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of a 3 alpha-hydroxysteroid dehydrogenase/carbonyl reductase from the gram-negative bacterium Comamonas testosteroni.
    Oppermann UC; Maser E
    Eur J Biochem; 1996 Nov; 241(3):744-9. PubMed ID: 8944761
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Degradation of chlorophenoxy herbicides by coupled Fenton and biological oxidation.
    Sanchis S; Polo AM; Tobajas M; Rodriguez JJ; Mohedano AF
    Chemosphere; 2013 Sep; 93(1):115-22. PubMed ID: 23726010
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.