These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 14674778)

  • 1. Scientific basis for process and catalyst design in the selective oxidation of methane to formaldehyde.
    Arena F; Parmaliana A
    Acc Chem Res; 2003 Dec; 36(12):867-75. PubMed ID: 14674778
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oxidation of methane over palladium catalysts: effect of the support.
    Escandón LS; Ordóñez S; Vega A; Díez FV
    Chemosphere; 2005 Jan; 58(1):9-17. PubMed ID: 15522328
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preparation of Ni-based metal monolithic catalysts and a study of their performance in methane reforming with CO2.
    Wang K; Li X; Ji S; Huang B; Li C
    ChemSusChem; 2008; 1(6):527-33. PubMed ID: 18702151
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preparation of Pd-based metal monolithic catalysts and a study of their performance in the catalytic combustion of methane.
    Yin F; Ji S; Wu P; Zhao F; Liu H; Li C
    ChemSusChem; 2008; 1(4):311-9. PubMed ID: 18605096
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetic analysis of photocatalytic oxidation of gas-phase formaldehyde over titanium dioxide.
    Liu H; Lian Z; Ye X; Shangguan W
    Chemosphere; 2005 Jul; 60(5):630-5. PubMed ID: 15963801
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Methane oxidation over mixed-conducting SrFe(Al)O3-delta-SrAl2O4 composite.
    Yaremchenko AA; Kharton VV; Valente AA; Veniaminov SA; Belyaev VD; Sobyanin VA; Marques FM
    Phys Chem Chem Phys; 2007 Jun; 9(21):2744-52. PubMed ID: 17627318
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Methyl chloride production from methane over lanthanum-based catalysts.
    Podkolzin SG; Stangland EE; Jones ME; Peringer E; Lercher JA
    J Am Chem Soc; 2007 Mar; 129(9):2569-76. PubMed ID: 17295483
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The kinetic of the catalytic decomposition of methyl isobutyl ketone over a Pt/gamma-Al2O3 catalyst.
    Tseng TK; Chu H; Ko TH; Chaung LK
    Chemosphere; 2005 Oct; 61(4):469-77. PubMed ID: 16202800
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ozone-enhanced catalytic oxidation of monochlorobenzene over iron oxide catalysts.
    Wang HC; Liang HS; Chang MB
    Chemosphere; 2011 Feb; 82(8):1090-5. PubMed ID: 21239042
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface properties and catalytic performance of La(1-x)Sr(x)FeO(3) perovskite-type oxides for methane combustion.
    Wang CH; Chen CL; Weng HS
    Chemosphere; 2004 Dec; 57(9):1131-8. PubMed ID: 15504472
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental and modeling study of the effect of CH(4) and pulverized coal on selective non-catalytic reduction process.
    Zhang Y; Cai N; Yang J; Xu B
    Chemosphere; 2008 Oct; 73(5):650-6. PubMed ID: 18727998
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oscillatory behaviour of catalytic properties, structure and temperature during the catalytic partial oxidation of methane on Pd/Al(2)O(3).
    Kimmerle B; Baiker A; Grunwaldt JD
    Phys Chem Chem Phys; 2010 Mar; 12(10):2288-91. PubMed ID: 20449341
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Catalytic combustion of methane over commercial catalysts in presence of ammonia and hydrogen sulphide.
    Hurtado P; Ordóñez S; Vega A; Díez FV
    Chemosphere; 2004 May; 55(5):681-9. PubMed ID: 15013673
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Is [FeO](2+) the active center also in iron containing zeolites? A density functional theory study of methane hydroxylation catalysis by Fe-ZSM-5 zeolite.
    Rosa A; Ricciardi G; Jan Baerends E
    Inorg Chem; 2010 Apr; 49(8):3866-80. PubMed ID: 20302356
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrasound-assisted polyol method for the preparation of SBA-15-supported ruthenium nanoparticles and the study of their catalytic activity on the partial oxidation of methane.
    Li H; Wang R; Hong Q; Chen L; Zhong Z; Koltypin Y; Calderon-Moreno J; Gedanken A
    Langmuir; 2004 Sep; 20(19):8352-6. PubMed ID: 15350113
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Catalytic combustion of volatile organic compounds.
    Everaert K; Baeyens J
    J Hazard Mater; 2004 Jun; 109(1-3):113-39. PubMed ID: 15177752
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of molecular and solid catalysts for the direct low-temperature oxidation of methane to methanol.
    Palkovits R; von Malotki C; Baumgarten M; Müllen K; Baltes C; Antonietti M; Kuhn P; Weber J; Thomas A; Schüth F
    ChemSusChem; 2010 Feb; 3(2):277-82. PubMed ID: 19780100
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Indoor formaldehyde removal by thermal catalyst: kinetic characteristics, key parameters, and temperature influence.
    Xu Q; Zhang Y; Mo J; Li X
    Environ Sci Technol; 2011 Jul; 45(13):5754-60. PubMed ID: 21667968
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Study of the elementary processes involved in the selective oxidation of methane over MoOx/SiO2.
    Ohler N; Bell AT
    J Phys Chem B; 2006 Feb; 110(6):2700-9. PubMed ID: 16471874
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Decomposition kinetics of ammonia in gaseous stream by a nanoscale copper-cerium bimetallic catalyst.
    Hung CM
    J Hazard Mater; 2008 Jan; 150(1):53-61. PubMed ID: 17517471
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.