These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 14674778)

  • 21. Hydrogen production from a combination of the water-gas shift and redox cycle process of methane partial oxidation via lattice oxygen over LaFeO3 perovskite catalyst.
    Dai XP; Wu Q; Li RJ; Yu CC; Hao ZP
    J Phys Chem B; 2006 Dec; 110(51):25856-62. PubMed ID: 17181232
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Structural and mechanistic insights into methane oxidation by particulate methane monooxygenase.
    Balasubramanian R; Rosenzweig AC
    Acc Chem Res; 2007 Jul; 40(7):573-80. PubMed ID: 17444606
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Elimination of formaldehyde over Cu-Al2O3 catalyst at room temperature.
    Zhang CB; Shi XY; Gao HW; He H
    J Environ Sci (China); 2005; 17(3):429-32. PubMed ID: 16083117
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Kinetics study on catalytic wet air oxidation of phenol by several metal oxide catalysts.
    Wan JF; Feng YJ; Cai WM; Yang SX; Sun XJ
    J Environ Sci (China); 2004; 16(4):556-8. PubMed ID: 15495955
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Spectroscopic and XRD characterisation of zeolite catalysts active for the oxidative methylation of benzene with methane.
    Adebajo MO; Long MA; Frost RL
    Spectrochim Acta A Mol Biomol Spectrosc; 2004 Mar; 60(4):791-9. PubMed ID: 15036089
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fenton-like oxidation of Rhodamine B in the presence of two types of iron (II, III) oxide.
    Xue X; Hanna K; Deng N
    J Hazard Mater; 2009 Jul; 166(1):407-14. PubMed ID: 19167810
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ligand-derived oxidase activity. Catalytic aerial oxidation of alcohols (including methanol) by Cu(II)-diradical complexes.
    Mukherjee C; Pieper U; Bothe E; Bachler V; Bill E; Weyhermüller T; Chaudhuri P
    Inorg Chem; 2008 Oct; 47(19):8943-56. PubMed ID: 18754615
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Low-temperature activation of methane: it also works without a transition metal.
    Schröder D; Roithová J
    Angew Chem Int Ed Engl; 2006 Aug; 45(34):5705-8. PubMed ID: 16858710
    [No Abstract]   [Full Text] [Related]  

  • 29. Two-metal-ion mechanism for hammerhead-ribozyme catalysis.
    Leclerc F; Karplus M
    J Phys Chem B; 2006 Feb; 110(7):3395-409. PubMed ID: 16494354
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Catalytic reaction mechanism of formaldehyde oxidation by oxygen species over Pt/TiO
    Ding J; Yang Y; Liu J; Wang Z
    Chemosphere; 2020 Jun; 248():125980. PubMed ID: 32004886
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Insight into the structure of supported palladium catalysts during the total oxidation of methane.
    Grunwaldt JD; van Vegten N; Baiker A
    Chem Commun (Camb); 2007 Nov; (44):4635-7. PubMed ID: 17989816
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Realistic modeling of ruthenium-catalyzed transfer hydrogenation.
    Handgraaf JW; Meijer EJ
    J Am Chem Soc; 2007 Mar; 129(11):3099-103. PubMed ID: 17319655
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Methane oxidation in a landfill cover with capillary barrier.
    Berger J; Fornés LV; Ott C; Jager J; Wawra B; Zanke U
    Waste Manag; 2005; 25(4):369-73. PubMed ID: 15869979
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Phenol oxidation kinetics in water solution using iron(3)-oxide-based nano-catalysts.
    Zelmanov G; Semiat R
    Water Res; 2008 Aug; 42(14):3848-56. PubMed ID: 18657285
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Preparation and catalytic properties of ZrO2-Al2O3 composite oxide supported nickel catalysts for methane reforming with carbon dioxide.
    Hao ZP; Hu C; Jiang Z; Lu GQ
    J Environ Sci (China); 2004; 16(2):316-20. PubMed ID: 15137662
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Non-Faradaic electrochemical activation of catalysis.
    Vayenas CG; Koutsodontis CG
    J Chem Phys; 2008 May; 128(18):182506. PubMed ID: 18532791
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Oxidative degradation of 2,6-dibromophenol using anion-exchange resin supported supramolecular catalysts of iron(III)-5,10,15,20-tetrakis (p-hydroxyphenyl)porphyrin bound to humic acid prepared via formaldehyde and urea-formaldehyde polycondensation.
    Shigetatsu S; Fukushima M; Nagao S
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2010 Oct; 45(12):1536-42. PubMed ID: 20721797
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Pd-N to Pd-O rearrangement for a carbamate synthesis from carbon dioxide and methane: a density functional and ab initio molecular dynamics metadynamics study.
    di Dio PJ; Brüssel M; Muñiz K; Ray RS; Zahn S; Kirchner B
    Angew Chem Int Ed Engl; 2011 Sep; 50(37):A40-5. PubMed ID: 22022716
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Combined sulfating and non-sulfating support to prevent water and sulfur poisoning of Pd catalysts for methane combustion.
    Di Carlo G; Melaet G; Kruse N; Liotta LF; Pantaleo G; Venezia AM
    Chem Commun (Camb); 2010 Sep; 46(34):6317-9. PubMed ID: 20676428
    [TBL] [Abstract][Full Text] [Related]  

  • 40. C-O bond scission of methoxide on Pd nanoparticles: a density functional study.
    Yudanov IV; Neyman KM; Rösch N
    Phys Chem Chem Phys; 2006 May; 8(20):2396-401. PubMed ID: 16710487
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.