These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 14674798)

  • 1. A personal sampler for aircraft engine cold start particles: laboratory development and testing.
    Armendariz A; Leith D
    AIHA J (Fairfax, Va); 2003; 64(6):755-62. PubMed ID: 14674798
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sampling and analysis of aircraft engine cold start particles and demonstration of an electrostatic personal particle sampler.
    Armendariz A; Leith D; Boundy M; Goodman R; Smith L; Carlton G
    AIHA J (Fairfax, Va); 2003; 64(6):777-84. PubMed ID: 14674797
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Field evaluation of nanofilm detectors for measuring acidic particles in indoor and outdoor air.
    Cohen BS; Heikkinen MS; Hazi Y; Gao H; Peters P; Lippmann M
    Res Rep Health Eff Inst; 2004 Sep; (121):1-35; discussion 37-46. PubMed ID: 15553489
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Performance of personal inhalable aerosol samplers in very slowly moving air when facing the aerosol source.
    Witschger O; Grinshpun SA; Fauvel S; Basso G
    Ann Occup Hyg; 2004 Jun; 48(4):351-68. PubMed ID: 15191944
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Laboratory measurements of oil mist concentrations using filters and an electrostatic precipitator.
    Leith D; Leith FA; Boundy MG
    Am Ind Hyg Assoc J; 1996 Dec; 57(12):1137-41. PubMed ID: 8976588
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A headset-mounted mini sampler for measuring exposure to welding aerosol in the breathing zone.
    Lidén G; Surakka J
    Ann Occup Hyg; 2009 Mar; 53(2):99-116. PubMed ID: 19196747
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of a high-volume portable bioaerosol sampler in laboratory and field environments.
    An HR; Mainelis G; Yao M
    Indoor Air; 2004 Dec; 14(6):385-93. PubMed ID: 15500631
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Aviation fuels and aircraft emissions. A risk characterization for airport neighbors using Hamburg Airport as an example].
    Tesseraux I; Mach B; Koss G
    Zentralbl Hyg Umweltmed; 1998 Jun; 201(2):135-51. PubMed ID: 9686444
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of wood-dust aerosol size-distributions collected by air samplers.
    Harper M; Akbar MZ; Andrew ME
    J Environ Monit; 2004 Jan; 6(1):18-22. PubMed ID: 14737465
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Increased formaldehyde in jet engine exhaust with changes to JP-8, lower temperature, and lower humidity irritates eyes and respiratory tract.
    Kobayashi A; Kikukawa A
    Aviat Space Environ Med; 2000 Apr; 71(4):396-9. PubMed ID: 10766464
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sampling of high amounts of bioaerosols using a high-volume electrostatic field sampler.
    Madsen AM; Sharma AK
    Ann Occup Hyg; 2008 Apr; 52(3):167-76. PubMed ID: 18326871
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of methodologies for identification and quantification of hazardous air pollutants from turbine engine emissions.
    Anneken D; Striebich R; DeWitt MJ; Klingshirn C; Corporan E
    J Air Waste Manag Assoc; 2015 Mar; 65(3):336-46. PubMed ID: 25947129
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Filter and electrostatic samplers for semivolatile aerosols: physical artifacts.
    Volckens J; Leith D
    Environ Sci Technol; 2002 Nov; 36(21):4613-7. PubMed ID: 12433172
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Combined scanning electron microscopy and image analysis to investigate airborne submicron particles: a comparison between personal samplers.
    Zamengo L; Barbiero N; Gregio M; Orrù G
    Chemosphere; 2009 Jul; 76(3):313-23. PubMed ID: 19398120
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Personal exposure to ultrafine particles in the workplace: exploring sampling techniques and strategies.
    Brouwer DH; Gijsbers JH; Lurvink MW
    Ann Occup Hyg; 2004 Jul; 48(5):439-53. PubMed ID: 15240340
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental methods to determine inhalability and personal sampler performance for aerosols in ultra-low windspeed environments.
    Schmees DK; Wu YH; Vincent JH
    J Environ Monit; 2008 Dec; 10(12):1426-36. PubMed ID: 19037484
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thoracic size-selective sampling of fibres: performance of four types of thoracic sampler in laboratory tests.
    Jones AD; Aitken RJ; Fabriès JF; Kauffer E; Liden G; Maynard A; Riediger G; Sahle W
    Ann Occup Hyg; 2005 Aug; 49(6):481-92. PubMed ID: 15790615
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exposures to jet fuel and benzene during aircraft fuel tank repair in the U.S. Air Force.
    Carlton GN; Smith LB
    Appl Occup Environ Hyg; 2000 Jun; 15(6):485-91. PubMed ID: 10853289
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Personal exposure to JP-8 jet fuel vapors and exhaust at air force bases.
    Pleil JD; Smith LB; Zelnick SD
    Environ Health Perspect; 2000 Mar; 108(3):183-92. PubMed ID: 10706522
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessment of human exposure to airborne fungi in agricultural confinements: personal inhalable sampling versus stationary sampling.
    Adhikari A; Reponen T; Lee SA; Grinshpun SA
    Ann Agric Environ Med; 2004; 11(2):269-77. PubMed ID: 15627336
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.