BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 14675452)

  • 1. Nuclear localization and in vivo dynamics of a plant-specific serine/arginine-rich protein.
    Ali GS; Golovkin M; Reddy AS
    Plant J; 2003 Dec; 36(6):883-93. PubMed ID: 14675452
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An SC35-like protein and a novel serine/arginine-rich protein interact with Arabidopsis U1-70K protein.
    Golovkin M; Reddy AS
    J Biol Chem; 1999 Dec; 274(51):36428-38. PubMed ID: 10593939
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interactions of SR45, an SR-like protein, with spliceosomal proteins and an intronic sequence: insights into regulated splicing.
    Day IS; Golovkin M; Palusa SG; Link A; Ali GS; Thomas J; Richardson DN; Reddy AS
    Plant J; 2012 Sep; 71(6):936-47. PubMed ID: 22563826
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phosphothreonine 218 is required for the function of SR45.1 in regulating flower petal development in Arabidopsis.
    Zhang XN; Mo C; Garrett WM; Cooper B
    Plant Signal Behav; 2014; 9(7):e29134. PubMed ID: 25763493
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two alternatively spliced isoforms of the Arabidopsis SR45 protein have distinct roles during normal plant development.
    Zhang XN; Mount SM
    Plant Physiol; 2009 Jul; 150(3):1450-8. PubMed ID: 19403727
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analyses of in vivo interaction and mobility of two spliceosomal proteins using FRAP and BiFC.
    Ali GS; Prasad KV; Hanumappa M; Reddy AS
    PLoS One; 2008 Apr; 3(4):e1953. PubMed ID: 18414657
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ATP, phosphorylation and transcription regulate the mobility of plant splicing factors.
    Ali GS; Reddy AS
    J Cell Sci; 2006 Sep; 119(Pt 17):3527-38. PubMed ID: 16895966
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Arabidopsis splicing regulator SR45 confers salt tolerance in a splice isoform-dependent manner.
    Albaqami M; Laluk K; Reddy ASN
    Plant Mol Biol; 2019 Jul; 100(4-5):379-390. PubMed ID: 30968308
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of plant developmental processes by a novel splicing factor.
    Ali GS; Palusa SG; Golovkin M; Prasad J; Manley JL; Reddy AS
    PLoS One; 2007 May; 2(5):e471. PubMed ID: 17534421
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An RNA recognition motif (RRM) is required for the localization of PTB-associated splicing factor (PSF) to subnuclear speckles.
    Dye BT; Patton JG
    Exp Cell Res; 2001 Feb; 263(1):131-44. PubMed ID: 11161712
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional distribution and dynamics of Arabidopsis SR splicing factors in living plant cells.
    Tillemans V; Dispa L; Remacle C; Collinge M; Motte P
    Plant J; 2005 Feb; 41(4):567-82. PubMed ID: 15686520
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Arabidopsis SR45 splicing factor bridges the splicing machinery and the exon-exon junction complex.
    Fanara S; Schloesser M; Joris M; De Franco S; Vandevenne M; Kerff F; Hanikenne M; Motte P
    J Exp Bot; 2024 Apr; 75(8):2280-2298. PubMed ID: 38180875
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcriptome-Wide Identification of RNA Targets of Arabidopsis SERINE/ARGININE-RICH45 Uncovers the Unexpected Roles of This RNA Binding Protein in RNA Processing.
    Xing D; Wang Y; Hamilton M; Ben-Hur A; Reddy AS
    Plant Cell; 2015 Dec; 27(12):3294-308. PubMed ID: 26603559
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Co-localisation studies of Arabidopsis SR splicing factors reveal different types of speckles in plant cell nuclei.
    Lorković ZJ; Hilscher J; Barta A
    Exp Cell Res; 2008 Oct; 314(17):3175-86. PubMed ID: 18674533
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative Proteomics Reveals a Role for SERINE/ARGININE-Rich 45 in Regulating RNA Metabolism and Modulating Transcriptional Suppression
    Chen SL; Rooney TJ; Hu AR; Beard HS; Garrett WM; Mangalath LM; Powers JJ; Cooper B; Zhang XN
    Front Plant Sci; 2019; 10():1116. PubMed ID: 31608083
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamic interactions between splicing snRNPs, coiled bodies and nucleoli revealed using snRNP protein fusions to the green fluorescent protein.
    Sleeman J; Lyon CE; Platani M; Kreivi JP; Lamond AI
    Exp Cell Res; 1998 Sep; 243(2):290-304. PubMed ID: 9743589
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nucleocytoplasmic partitioning of the plant photoreceptors phytochrome A, B, C, D, and E is regulated differentially by light and exhibits a diurnal rhythm.
    Kircher S; Gil P; Kozma-Bognár L; Fejes E; Speth V; Husselstein-Muller T; Bauer D; Adám E; Schäfer E; Nagy F
    Plant Cell; 2002 Jul; 14(7):1541-55. PubMed ID: 12119373
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic Distribution and Interaction of the Arabidopsis SRSF1 Subfamily Splicing Factors.
    Stankovic N; Schloesser M; Joris M; Sauvage E; Hanikenne M; Motte P
    Plant Physiol; 2016 Feb; 170(2):1000-13. PubMed ID: 26697894
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ABA signaling prevents phosphodegradation of the SR45 splicing factor to alleviate inhibition of early seedling development in Arabidopsis.
    Albuquerque-Martins R; Szakonyi D; Rowe J; Jones AM; Duque P
    Plant Commun; 2023 Mar; 4(2):100495. PubMed ID: 36419364
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nuclear bodies and compartmentalization of pre-mRNA splicing factors in higher plants.
    Docquier S; Tillemans V; Deltour R; Motte P
    Chromosoma; 2004 Feb; 112(5):255-66. PubMed ID: 14740228
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.