These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

443 related articles for article (PubMed ID: 14675536)

  • 1. O-GlcNAc modification is an endogenous inhibitor of the proteasome.
    Zhang F; Su K; Yang X; Bowe DB; Paterson AJ; Kudlow JE
    Cell; 2003 Dec; 115(6):715-25. PubMed ID: 14675536
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Accumulation of protein O-GlcNAc modification inhibits proteasomes in the brain and coincides with neuronal apoptosis in brain areas with high O-GlcNAc metabolism.
    Liu K; Paterson AJ; Zhang F; McAndrew J; Fukuchi K; Wyss JM; Peng L; Hu Y; Kudlow JE
    J Neurochem; 2004 May; 89(4):1044-55. PubMed ID: 15140202
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Demonstration that a human 26S proteolytic complex consists of a proteasome and multiple associated protein components and hydrolyzes ATP and ubiquitin-ligated proteins by closely linked mechanisms.
    Kanayama HO; Tamura T; Ugai S; Kagawa S; Tanahashi N; Yoshimura T; Tanaka K; Ichihara A
    Eur J Biochem; 1992 Jun; 206(2):567-78. PubMed ID: 1317798
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The unfolding of substrates and ubiquitin-independent protein degradation by proteasomes.
    Benaroudj N; Tarcsa E; Cascio P; Goldberg AL
    Biochimie; 2001; 83(3-4):311-8. PubMed ID: 11295491
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Purification and characterization of the 26S proteasome complex catalyzing ATP-dependent breakdown of ubiquitin-ligated proteins from rat liver.
    Ugai S; Tamura T; Tanahashi N; Takai S; Komi N; Chung CH; Tanaka K; Ichihara A
    J Biochem; 1993 Jun; 113(6):754-68. PubMed ID: 8396572
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional analysis of the proteasome regulatory particle.
    Glickman MH; Rubin DM; Fu H; Larsen CN; Coux O; Wefes I; Pfeifer G; Cjeka Z; Vierstra R; Baumeister W; Fried V; Finley D
    Mol Biol Rep; 1999 Apr; 26(1-2):21-8. PubMed ID: 10363642
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ornithine decarboxylase is degraded by the 26S proteasome without ubiquitination.
    Murakami Y; Matsufuji S; Kameji T; Hayashi S; Igarashi K; Tamura T; Tanaka K; Ichihara A
    Nature; 1992 Dec; 360(6404):597-9. PubMed ID: 1334232
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ubiquitin in chains.
    Pickart CM
    Trends Biochem Sci; 2000 Nov; 25(11):544-8. PubMed ID: 11084366
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Downregulation of ubiquitin-dependent proteolysis by eicosapentaenoic acid in acute starvation.
    Whitehouse AS; Tisdale MJ
    Biochem Biophys Res Commun; 2001 Jul; 285(3):598-602. PubMed ID: 11453634
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gamma-interferon and expression of MHC genes regulate peptide hydrolysis by proteasomes.
    Gaczynska M; Rock KL; Goldberg AL
    Nature; 1993 Sep; 365(6443):264-7. PubMed ID: 8396732
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Proteasomes. Complex proteases lead to a new understanding of cellular regulation through proteolysis].
    Hilt W; Wolf DH
    Naturwissenschaften; 1995 Jun; 82(6):257-68. PubMed ID: 7643904
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The proteasome-dependent proteolytic system.
    Tanahashi N; Kawahara H; Murakami Y; Tanaka K
    Mol Biol Rep; 1999 Apr; 26(1-2):3-9. PubMed ID: 10363639
    [TBL] [Abstract][Full Text] [Related]  

  • 13. P62 and the sequestosome, a novel mechanism for protein metabolism.
    Shin J
    Arch Pharm Res; 1998 Dec; 21(6):629-33. PubMed ID: 9868528
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intranuclear inclusions and the ubiquitin-proteasome pathway: digestion of a red herring?
    Floyd JA; Hamilton BA
    Neuron; 1999 Dec; 24(4):765-6. PubMed ID: 10624938
    [No Abstract]   [Full Text] [Related]  

  • 15. The 26S proteasome of the yeast Saccharomyces cerevisiae.
    Fischer M; Hilt W; Richter-Ruoff B; Gonen H; Ciechanover A; Wolf DH
    FEBS Lett; 1994 Nov; 355(1):69-75. PubMed ID: 7957966
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The proteasome: a macromolecular assembly designed for controlled proteolysis.
    Zwickl P; Voges D; Baumeister W
    Philos Trans R Soc Lond B Biol Sci; 1999 Sep; 354(1389):1501-11. PubMed ID: 10582236
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of proteolysis.
    Attaix D; Combaret L; Pouch MN; Taillandier D
    Curr Opin Clin Nutr Metab Care; 2001 Jan; 4(1):45-9. PubMed ID: 11122559
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of the proteasome by AMPK in endothelial cells: the role of O-GlcNAc transferase (OGT).
    Xu J; Wang S; Viollet B; Zou MH
    PLoS One; 2012; 7(5):e36717. PubMed ID: 22574218
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Manipulation of the ubiquitin-proteasome pathway in cachexia: pentoxifylline suppresses the activation of 20S and 26S proteasomes in muscles from tumor-bearing rats.
    Combaret L; Rallière C; Taillandier D; Tanaka K; Attaix D
    Mol Biol Rep; 1999 Apr; 26(1-2):95-101. PubMed ID: 10363654
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Degradation of tyrosine aminotransferase (TAT) via the ubiquitin-proteasome pathway.
    Gross-Mesilaty S; Hargrove JL; Ciechanover A
    FEBS Lett; 1997 Mar; 405(2):175-80. PubMed ID: 9089286
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.