BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 14675542)

  • 1. Mycobacterium tuberculosis: a model system for structural genomics.
    Smith CV; Sacchettini JC
    Curr Opin Struct Biol; 2003 Dec; 13(6):658-64. PubMed ID: 14675542
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Advances in Mycobacterium tuberculosis structural genomics: investigating potential chinks in the armor of a deadly pathogen.
    Chim N; McMath LM; Beeby M; Goulding CW
    Infect Disord Drug Targets; 2009 Nov; 9(5):475-92. PubMed ID: 19594421
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessing the progress of Mycobacterium tuberculosis H37Rv structural genomics.
    Fang Z; van der Merwe RG; Warren RM; Schubert WD; Gey van Pittius NC
    Tuberculosis (Edinb); 2015 Mar; 95(2):131-6. PubMed ID: 25578513
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The potential impact of structural genomics on tuberculosis drug discovery.
    Arcus VL; Lott JS; Johnston JM; Baker EN
    Drug Discov Today; 2006 Jan; 11(1-2):28-34. PubMed ID: 16478688
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification and characterization of potential druggable targets among hypothetical proteins of extensively drug resistant Mycobacterium tuberculosis (XDR KZN 605) through subtractive genomics approach.
    Uddin R; Siddiqui QN; Azam SS; Saima B; Wadood A
    Eur J Pharm Sci; 2018 Mar; 114():13-23. PubMed ID: 29174549
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The tuberculosis structural genomics consortium: a structural genomics approach to drug discovery.
    Musa TL; Ioerger TR; Sacchettini JC
    Adv Protein Chem Struct Biol; 2009; 77():41-76. PubMed ID: 20663481
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural genomics of Mycobacterium tuberculosis: a preliminary report of progress at UCLA.
    Goulding CW; Perry LJ; Anderson D; Sawaya MR; Cascio D; Apostol MI; Chan S; Parseghian A; Wang SS; Wu Y; Cassano V; Gill HS; Eisenberg D
    Biophys Chem; 2003 Sep; 105(2-3):361-70. PubMed ID: 14499904
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural genomics approach to drug discovery for Mycobacterium tuberculosis.
    Ioerger TR; Sacchettini JC
    Curr Opin Microbiol; 2009 Jun; 12(3):318-25. PubMed ID: 19481971
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Development of antituberculous drugs: current status and future prospects].
    Tomioka H; Namba K
    Kekkaku; 2006 Dec; 81(12):753-74. PubMed ID: 17240921
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unraveling the potential of intrinsically disordered proteins as drug targets: application to Mycobacterium tuberculosis.
    Anurag M; Dash D
    Mol Biosyst; 2009 Dec; 5(12):1752-7. PubMed ID: 19763328
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure-based approaches to drug discovery against tuberculosis.
    Holton SJ; Weiss MS; Tucker PA; Wilmanns M
    Curr Protein Pept Sci; 2007 Aug; 8(4):365-75. PubMed ID: 17696869
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural biology and biochemistry of cytochrome P450 systems in Mycobacterium tuberculosis.
    McLean KJ; Munro AW
    Drug Metab Rev; 2008; 40(3):427-46. PubMed ID: 18642141
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An overview to understand the role of PE_PGRS family proteins in Mycobacterium tuberculosis H37 Rv and their potential as new drug targets.
    Meena LS
    Biotechnol Appl Biochem; 2015; 62(2):145-53. PubMed ID: 24975480
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protein targets for structure-based anti-Mycobacterium tuberculosis drug discovery.
    Lou Z; Zhang X
    Protein Cell; 2010 May; 1(5):435-42. PubMed ID: 21203958
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The progress made in determining the Mycobacterium tuberculosis structural proteome.
    Ehebauer MT; Wilmanns M
    Proteomics; 2011 Aug; 11(15):3128-33. PubMed ID: 21674801
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PhoP, a key player in Mycobacterium tuberculosis virulence.
    Ryndak M; Wang S; Smith I
    Trends Microbiol; 2008 Nov; 16(11):528-34. PubMed ID: 18835713
    [TBL] [Abstract][Full Text] [Related]  

  • 17.
    Nunes JES; Duque MA; de Freitas TF; Galina L; Timmers LFSM; Bizarro CV; Machado P; Basso LA; Ducati RG
    Molecules; 2020 Mar; 25(6):. PubMed ID: 32168746
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparing isogenic strains of Beijing genotype Mycobacterium tuberculosis after acquisition of Isoniazid resistance: A proteomics approach.
    Nieto R LM; Mehaffy C; Dobos KM
    Proteomics; 2016 May; 16(9):1376-80. PubMed ID: 26929115
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mycobacterium tuberculosis H37Rv LpqG Protein Peptides Can Inhibit Mycobacterial Entry through Specific Interactions.
    Sánchez-Barinas CD; Ocampo M; Vanegas M; Castañeda-Ramirez JJ; Patarroyo MA; Patarroyo ME
    Molecules; 2018 Feb; 23(3):. PubMed ID: 29495456
    [No Abstract]   [Full Text] [Related]  

  • 20. Novel targets in M. tuberculosis: search for new drugs.
    Lamichhane G
    Trends Mol Med; 2011 Jan; 17(1):25-33. PubMed ID: 21071272
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.