BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 14675552)

  • 1. Catalysis by nucleoside hydrolases.
    Versées W; Steyaert J
    Curr Opin Struct Biol; 2003 Dec; 13(6):731-8. PubMed ID: 14675552
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transition-state complex of the purine-specific nucleoside hydrolase of T. vivax: enzyme conformational changes and implications for catalysis.
    Versées W; Barlow J; Steyaert J
    J Mol Biol; 2006 Jun; 359(2):331-46. PubMed ID: 16630632
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Leaving group activation by aromatic stacking: an alternative to general acid catalysis.
    Versées W; Loverix S; Vandemeulebroucke A; Geerlings P; Steyaert J
    J Mol Biol; 2004 Apr; 338(1):1-6. PubMed ID: 15050818
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Iminoribitol transition state analogue inhibitors of protozoan nucleoside hydrolases.
    Miles RW; Tyler PC; Evans GB; Furneaux RH; Parkin DW; Schramm VL
    Biochemistry; 1999 Oct; 38(40):13147-54. PubMed ID: 10529186
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pre-steady-state analysis of the nucleoside hydrolase of Trypanosoma vivax. Evidence for half-of-the-sites reactivity and rate-limiting product release.
    Vandemeulebroucke A; Versées W; De Vos S; Van Holsbeke E; Steyaert J
    Biochemistry; 2003 Nov; 42(44):12902-8. PubMed ID: 14596604
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural and biochemical characterization of the nucleoside hydrolase from C. elegans reveals the role of two active site cysteine residues in catalysis.
    Singh RK; Steyaert J; Versées W
    Protein Sci; 2017 May; 26(5):985-996. PubMed ID: 28218438
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Three-dimensional structure of the inosine-uridine nucleoside N-ribohydrolase from Crithidia fasciculata.
    Degano M; Gopaul DN; Scapin G; Schramm VL; Sacchettini JC
    Biochemistry; 1996 May; 35(19):5971-81. PubMed ID: 8634238
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Correlation of the molecular electrostatic potential surface of an enzymatic transition state with novel transition-state inhibitors.
    Horenstein BA; Schramm VL
    Biochemistry; 1993 Sep; 32(38):9917-25. PubMed ID: 8399161
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure and function of a novel purine specific nucleoside hydrolase from Trypanosoma vivax.
    Versées W; Decanniere K; Pellé R; Depoorter J; Brosens E; Parkin DW; Steyaert J
    J Mol Biol; 2001 Apr; 307(5):1363-79. PubMed ID: 11292348
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural explanation for the tunable substrate specificity of an E. coli nucleoside hydrolase: insights from molecular dynamics simulations.
    Lenz SAP; Wetmore SD
    J Comput Aided Mol Des; 2018 Dec; 32(12):1375-1388. PubMed ID: 30478756
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enzyme-substrate interactions in the purine-specific nucleoside hydrolase from Trypanosoma vivax.
    Versées W; Decanniere K; Van Holsbeke E; Devroede N; Steyaert J
    J Biol Chem; 2002 May; 277(18):15938-46. PubMed ID: 11854281
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A flexible loop as a functional element in the catalytic mechanism of nucleoside hydrolase from Trypanosoma vivax.
    Vandemeulebroucke A; De Vos S; Van Holsbeke E; Steyaert J; Versées W
    J Biol Chem; 2008 Aug; 283(32):22272-82. PubMed ID: 18519562
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Purine nucleoside phosphorylase. 2. Catalytic mechanism.
    Erion MD; Stoeckler JD; Guida WC; Walter RL; Ealick SE
    Biochemistry; 1997 Sep; 36(39):11735-48. PubMed ID: 9305963
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational study of IAG-nucleoside hydrolase: determination of the preferred ground state conformation and the role of active site residues.
    Mazumder-Shivakumar D; Bruice TC
    Biochemistry; 2005 May; 44(21):7805-17. PubMed ID: 15909995
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transition state structure of purine nucleoside phosphorylase and principles of atomic motion in enzymatic catalysis.
    Fedorov A; Shi W; Kicska G; Fedorov E; Tyler PC; Furneaux RH; Hanson JC; Gainsford GJ; Larese JZ; Schramm VL; Almo SC
    Biochemistry; 2001 Jan; 40(4):853-60. PubMed ID: 11170405
    [TBL] [Abstract][Full Text] [Related]  

  • 16. New determinants in the catalytic mechanism of nucleoside hydrolases from the structures of two isozymes from Sulfolobus solfataricus.
    Minici C; Cacciapuoti G; De Leo E; Porcelli M; Degano M
    Biochemistry; 2012 Jun; 51(22):4590-9. PubMed ID: 22551416
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Isozyme-specific transition state inhibitors for the trypanosomal nucleoside hydrolases.
    Parkin DW; Limberg G; Tyler PC; Furneaux RH; Chen XY; Schramm VL
    Biochemistry; 1997 Mar; 36(12):3528-34. PubMed ID: 9132003
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New insights into the mechanism of nucleoside hydrolases from the crystal structure of the Escherichia coli YbeK protein bound to the reaction product.
    Muzzolini L; Versées W; Tornaghi P; Van Holsbeke E; Steyaert J; Degano M
    Biochemistry; 2006 Jan; 45(3):773-82. PubMed ID: 16411753
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural snapshots of MTA/AdoHcy nucleosidase along the reaction coordinate provide insights into enzyme and nucleoside flexibility during catalysis.
    Lee JE; Smith GD; Horvatin C; Huang DJ; Cornell KA; Riscoe MK; Howell PL
    J Mol Biol; 2005 Sep; 352(3):559-74. PubMed ID: 16109423
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exploring nucleoside hydrolase catalysis in silico: molecular dynamics study of enzyme-bound substrate and transition state.
    Mazumder D; Bruice TC
    J Am Chem Soc; 2002 Dec; 124(49):14591-600. PubMed ID: 12465969
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.