These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 14675948)
1. Assessment of mechanobiological models for the numerical simulation of tissue differentiation around immediately loaded implants. Geris L; Van Oosterwyck H; Vander Sloten J; Duyck J; Naert I Comput Methods Biomech Biomed Engin; 2003; 6(5-6):277-88. PubMed ID: 14675948 [TBL] [Abstract][Full Text] [Related]
2. Numerical simulation of tissue differentiation around loaded titanium implants in a bone chamber. Geris L; Andreykiv A; Van Oosterwyck H; Sloten JV; van Keulen F; Duyck J; Naert I J Biomech; 2004 May; 37(5):763-9. PubMed ID: 15047006 [TBL] [Abstract][Full Text] [Related]
3. Corroboration of mechanobiological simulations of tissue differentiation in an in vivo bone chamber using a lattice-modeling approach. Khayyeri H; Checa S; Tägil M; Prendergast PJ J Orthop Res; 2009 Dec; 27(12):1659-66. PubMed ID: 19514073 [TBL] [Abstract][Full Text] [Related]
4. Application of mechanoregulatory models to simulate peri-implant tissue formation in an in vivo bone chamber. Geris L; Vandamme K; Naert I; Vander Sloten J; Duyck J; Van Oosterwyck H J Biomech; 2008; 41(1):145-54. PubMed ID: 17706229 [TBL] [Abstract][Full Text] [Related]
5. Random-walk models of cell dispersal included in mechanobiological simulations of tissue differentiation. Pérez MA; Prendergast PJ J Biomech; 2007; 40(10):2244-53. PubMed ID: 17173925 [TBL] [Abstract][Full Text] [Related]
6. Comparison of biophysical stimuli for mechano-regulation of tissue differentiation during fracture healing. Isaksson H; Wilson W; van Donkelaar CC; Huiskes R; Ito K J Biomech; 2006; 39(8):1507-16. PubMed ID: 15972212 [TBL] [Abstract][Full Text] [Related]
7. Numerical simulation of bone regeneration in a bone chamber. Geris L; Vandamme K; Naert I; Vander Sloten J; Duyck J; Van Oosterwyck H J Dent Res; 2009 Feb; 88(2):158-63. PubMed ID: 19278988 [TBL] [Abstract][Full Text] [Related]
8. Mechanical loading affects angiogenesis and osteogenesis in an in vivo bone chamber: a modeling study. Geris L; Vandamme K; Naert I; Vander Sloten J; Van Oosterwyck H; Duyck J Tissue Eng Part A; 2010 Nov; 16(11):3353-61. PubMed ID: 20528674 [TBL] [Abstract][Full Text] [Related]
9. Variability observed in mechano-regulated in vivo tissue differentiation can be explained by variation in cell mechano-sensitivity. Khayyeri H; Checa S; Tägil M; Aspenberg P; Prendergast PJ J Biomech; 2011 Apr; 44(6):1051-8. PubMed ID: 21377680 [TBL] [Abstract][Full Text] [Related]
10. Simulation of fracture healing incorporating mechanoregulation of tissue differentiation and dispersal/proliferation of cells. Andreykiv A; van Keulen F; Prendergast PJ Biomech Model Mechanobiol; 2008 Dec; 7(6):443-61. PubMed ID: 17972123 [TBL] [Abstract][Full Text] [Related]
11. Determining the most important cellular characteristics for fracture healing using design of experiments methods. Isaksson H; van Donkelaar CC; Huiskes R; Yao J; Ito K J Theor Biol; 2008 Nov; 255(1):26-39. PubMed ID: 18723028 [TBL] [Abstract][Full Text] [Related]
12. Corroboration of mechanoregulatory algorithms for tissue differentiation during fracture healing: Comparison with in vivo results. Isaksson H; van Donkelaar CC; Huiskes R; Ito K J Orthop Res; 2006 May; 24(5):898-907. PubMed ID: 16583441 [TBL] [Abstract][Full Text] [Related]
13. Micro-finite element simulation of trabecular-bone post-yield behaviour--effects of material model, element size and type. Verhulp E; Van Rietbergen B; Muller R; Huiskes R Comput Methods Biomech Biomed Engin; 2008 Aug; 11(4):389-95. PubMed ID: 18568833 [TBL] [Abstract][Full Text] [Related]
14. Bone ingrowth into a porous coated implant predicted by a mechano-regulatory tissue differentiation algorithm. Liu X; Niebur GL Biomech Model Mechanobiol; 2008 Aug; 7(4):335-44. PubMed ID: 17701434 [TBL] [Abstract][Full Text] [Related]
15. Mechano-regulation of mesenchymal stem cell differentiation and collagen organisation during skeletal tissue repair. Nagel T; Kelly DJ Biomech Model Mechanobiol; 2010 Jun; 9(3):359-72. PubMed ID: 20039092 [TBL] [Abstract][Full Text] [Related]
16. Multilevel finite element modeling for the prediction of local cellular deformation in bone. Deligianni DD; Apostolopoulos CA Biomech Model Mechanobiol; 2008 Apr; 7(2):151-9. PubMed ID: 17431696 [TBL] [Abstract][Full Text] [Related]
17. Histodynamics of bone tissue formation around immediately loaded cylindrical implants in the rabbit. Vandamme K; Naert I; Geris L; Sloten JV; Puers R; Duyck J Clin Oral Implants Res; 2007 Aug; 18(4):471-80. PubMed ID: 17517061 [TBL] [Abstract][Full Text] [Related]
18. Numeric simulation of time-dependent remodeling of bone around loaded oral implants. Eser A; Tonuk E; Akca K; Cehreli MC Int J Oral Maxillofac Implants; 2009; 24(4):597-608. PubMed ID: 19885399 [TBL] [Abstract][Full Text] [Related]
19. The influence of Young's modulus of loaded implants on bone remodeling: an experimental and numerical study in the goat knee. Stoppie N; Van Oosterwyck H; Jansen J; Wolke J; Wevers M; Naert I J Biomed Mater Res A; 2009 Sep; 90(3):792-803. PubMed ID: 18615463 [TBL] [Abstract][Full Text] [Related]
20. Three-dimensional simulation of fracture repair in the human tibia. Lacroix D; Prendergast PJ Comput Methods Biomech Biomed Engin; 2002 Oct; 5(5):369-76. PubMed ID: 12745434 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]