These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 14676189)

  • 61. Differentiation stage-specific inhibition of the Raf-MEK-ERK pathway by Akt.
    Rommel C; Clarke BA; Zimmermann S; Nuñez L; Rossman R; Reid K; Moelling K; Yancopoulos GD; Glass DJ
    Science; 1999 Nov; 286(5445):1738-41. PubMed ID: 10576741
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Sustained activation of the Raf/MEK/Erk pathway in response to EGF in stable cell lines expressing the Hepatitis C Virus (HCV) core protein.
    Giambartolomei S; Covone F; Levrero M; Balsano C
    Oncogene; 2001 May; 20(20):2606-10. PubMed ID: 11420671
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Cross-talk between secretory phospholipase A2 and cytosolic phospholipase A2 in rat renal mesangial cells.
    Huwiler A; Staudt G; Kramer RM; Pfeilschifter J
    Biochim Biophys Acta; 1997 Oct; 1348(3):257-72. PubMed ID: 9366243
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Lipopolysaccharide-induced tumor necrosis factor alpha production by human monocytes involves the raf-1/MEK1-MEK2/ERK1-ERK2 pathway.
    van der Bruggen T; Nijenhuis S; van Raaij E; Verhoef J; van Asbeck BS
    Infect Immun; 1999 Aug; 67(8):3824-9. PubMed ID: 10417144
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Human alphaA- and alphaB-crystallins prevent UVA-induced apoptosis through regulation of PKCalpha, RAF/MEK/ERK and AKT signaling pathways.
    Liu JP; Schlosser R; Ma WY; Dong Z; Feng H; Liu L; Huang XQ; Liu Y; Li DW
    Exp Eye Res; 2004 Sep; 79(3):393-403. PubMed ID: 15336502
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Targeting ERK1/2 protein-serine/threonine kinases in human cancers.
    Roskoski R
    Pharmacol Res; 2019 Apr; 142():151-168. PubMed ID: 30794926
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Calcium/calmodulin-dependent protein kinase II binds to Raf-1 and modulates integrin-stimulated ERK activation.
    Illario M; Cavallo AL; Bayer KU; Di Matola T; Fenzi G; Rossi G; Vitale M
    J Biol Chem; 2003 Nov; 278(46):45101-8. PubMed ID: 12954639
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Platelet ERK2 activation by thrombin is dependent on calcium and conventional protein kinases C but not Raf-1 or B-Raf.
    Nadal-Wollbold F; Pawlowski M; Lévy-Toledano S; Berrou E; Rosa JP; Bryckaert M
    FEBS Lett; 2002 Nov; 531(3):475-82. PubMed ID: 12435596
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Competition between Chlamydia psittaci and L cells for host isoleucine pools: a limiting factor in chlamydial multiplication.
    Hatch TP
    Infect Immun; 1975 Jul; 12(1):211-20. PubMed ID: 1095493
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Mcl-1 is a key regulator of apoptosis resistance in Chlamydia trachomatis-infected cells.
    Rajalingam K; Sharma M; Lohmann C; Oswald M; Thieck O; Froelich CJ; Rudel T
    PLoS One; 2008 Sep; 3(9):e3102. PubMed ID: 18769617
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Acquisition of nutrients by Chlamydiae: unique challenges of living in an intracellular compartment.
    Saka HA; Valdivia RH
    Curr Opin Microbiol; 2010 Feb; 13(1):4-10. PubMed ID: 20006538
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Chlamydial effector proteins localized to the host cell cytoplasmic compartment.
    Kleba B; Stephens RS
    Infect Immun; 2008 Nov; 76(11):4842-50. PubMed ID: 18710866
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Uptake and intra-inclusion accumulation of exogenous immunoglobulin by Chlamydia-infected cells.
    Pollack DV; Croteau NL; Stuart ES
    BMC Microbiol; 2008 Dec; 8():213. PubMed ID: 19061499
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Killing me softly: chlamydial use of proteolysis for evading host defenses.
    Zhong G
    Trends Microbiol; 2009 Oct; 17(10):467-74. PubMed ID: 19765998
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Chlamydial metabolism revisited: interspecies metabolic variability and developmental stage-specific physiologic activities.
    Omsland A; Sixt BS; Horn M; Hackstadt T
    FEMS Microbiol Rev; 2014 Jul; 38(4):779-801. PubMed ID: 24484402
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Rottlerin inhibits chlamydial intracellular growth and blocks chlamydial acquisition of sphingolipids from host cells.
    Shivshankar P; Lei L; Wang J; Zhong G
    Appl Environ Microbiol; 2008 Feb; 74(4):1243-9. PubMed ID: 18083882
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Hijacking and Use of Host Kinases by Chlamydiae.
    Sah P; Lutter EI
    Pathogens; 2020 Dec; 9(12):. PubMed ID: 33321710
    [No Abstract]   [Full Text] [Related]  

  • 78. Chlamydia species-dependent differences in the growth requirement for lysosomes.
    Ouellette SP; Dorsey FC; Moshiach S; Cleveland JL; Carabeo RA
    PLoS One; 2011 Mar; 6(3):e16783. PubMed ID: 21408144
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Hijacking host cell vesicular transport: New insights into the nutrient acquisition mechanism of
    Wenbo L; Yewei Y; Hui Z; Zhongyu L
    Virulence; 2024 Dec; 15(1):2351234. PubMed ID: 38773735
    [No Abstract]   [Full Text] [Related]  

  • 80. Modulation of host signaling and cellular responses by Chlamydia.
    Mehlitz A; Rudel T
    Cell Commun Signal; 2013 Nov; 11():90. PubMed ID: 24267514
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.