These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
447 related articles for article (PubMed ID: 14676310)
1. A new tool for routine testing of cellular protein expression: integration of cell staining and analysis of protein expression on a microfluidic chip-based system. Buhlmann C; Preckel T; Chan S; Luedke G; Valer M J Biomol Tech; 2003 Jun; 14(2):119-27. PubMed ID: 14676310 [TBL] [Abstract][Full Text] [Related]
2. Cytometric analysis of protein expression and apoptosis in human primary cells with a novel microfluidic chip-based system. Chan SD; Luedke G; Valer M; Buhlmann C; Preckel T Cytometry A; 2003 Oct; 55(2):119-25. PubMed ID: 14505317 [TBL] [Abstract][Full Text] [Related]
3. Single-cell analysis of yeast, mammalian cells, and fungal spores with a microfluidic pressure-driven chip-based system. Palková Z; Váchová L; Valer M; Preckel T Cytometry A; 2004 Jun; 59(2):246-53. PubMed ID: 15170604 [TBL] [Abstract][Full Text] [Related]
5. Microfluidic lab-on-a-chip platforms: requirements, characteristics and applications. Mark D; Haeberle S; Roth G; von Stetten F; Zengerle R Chem Soc Rev; 2010 Mar; 39(3):1153-82. PubMed ID: 20179830 [TBL] [Abstract][Full Text] [Related]
6. Chemical cytometry on microfluidic chips. Yan H; Zhang B; Wu H Electrophoresis; 2008 May; 29(9):1775-86. PubMed ID: 18384067 [TBL] [Abstract][Full Text] [Related]
7. A microfluidic platform for sequential ligand labeling and cell binding analysis. Sui G; Lee CC; Kamei K; Li HJ; Wang JY; Wang J; Herschman HR; Tseng HR Biomed Microdevices; 2007 Jun; 9(3):301-5. PubMed ID: 17195108 [TBL] [Abstract][Full Text] [Related]
8. Fluorescence-intensity multiplexing: simultaneous seven-marker, two-color immunophenotyping using flow cytometry. Bradford JA; Buller G; Suter M; Ignatius M; Beechem JM Cytometry A; 2004 Oct; 61(2):142-52. PubMed ID: 15382027 [TBL] [Abstract][Full Text] [Related]
9. Fully integrated miniature device for automated gene expression DNA microarray processing. Liu RH; Nguyen T; Schwarzkopf K; Fuji HS; Petrova A; Siuda T; Peyvan K; Bizak M; Danley D; McShea A Anal Chem; 2006 Mar; 78(6):1980-6. PubMed ID: 16536436 [TBL] [Abstract][Full Text] [Related]
16. Automated flow cytometry for acquisition of time-dependent population data. Abu-Absi NR; Zamamiri A; Kacmar J; Balogh SJ; Srienc F Cytometry A; 2003 Feb; 51(2):87-96. PubMed ID: 12541283 [TBL] [Abstract][Full Text] [Related]
17. A microwell array device with integrated microfluidic components for enhanced single-cell analysis. Lindström S; Mori K; Ohashi T; Andersson-Svahn H Electrophoresis; 2009 Dec; 30(24):4166-71. PubMed ID: 19938185 [TBL] [Abstract][Full Text] [Related]
18. A disposable and cost efficient microfluidic device for the rapid chip-based electrical detection of DNA. Schüler T; Kretschmer R; Jessing S; Urban M; Fritzsche W; Möller R; Popp J Biosens Bioelectron; 2009 Sep; 25(1):15-21. PubMed ID: 19592230 [TBL] [Abstract][Full Text] [Related]
19. Merging microfluidics with microarray-based bioassays. Situma C; Hashimoto M; Soper SA Biomol Eng; 2006 Oct; 23(5):213-31. PubMed ID: 16905357 [TBL] [Abstract][Full Text] [Related]
20. Microfluidic chip accomplishing self-fluid replacement using only capillary force and its bioanalytical application. Chung KH; Hong JW; Lee DS; Yoon HC Anal Chim Acta; 2007 Feb; 585(1):1-10. PubMed ID: 17386640 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]