These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 14676318)

  • 41. Pfold: RNA secondary structure prediction using stochastic context-free grammars.
    Knudsen B; Hein J
    Nucleic Acids Res; 2003 Jul; 31(13):3423-8. PubMed ID: 12824339
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Prediction of RNA secondary structure with pseudoknots using integer programming.
    Poolsap U; Kato Y; Akutsu T
    BMC Bioinformatics; 2009 Jan; 10 Suppl 1(Suppl 1):S38. PubMed ID: 19208139
    [TBL] [Abstract][Full Text] [Related]  

  • 43. RNA secondary structure design.
    Burghardt B; Hartmann AK
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Feb; 75(2 Pt 1):021920. PubMed ID: 17358380
    [TBL] [Abstract][Full Text] [Related]  

  • 44. An algorithm for computing nucleic acid base-pairing probabilities including pseudoknots.
    Dirks RM; Pierce NA
    J Comput Chem; 2004 Jul; 25(10):1295-304. PubMed ID: 15139042
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Improvements of the hierarchical approach for predicting RNA tertiary structure.
    Zhao Y; Gong Z; Xiao Y
    J Biomol Struct Dyn; 2011 Apr; 28(5):815-26. PubMed ID: 21294592
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A complex adaptive systems approach to the kinetic folding of RNA.
    Ndifon W
    Biosystems; 2005 Dec; 82(3):257-65. PubMed ID: 16171941
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Stochastic modeling of RNA pseudoknotted structures: a grammatical approach.
    Cai L; Malmberg RL; Wu Y
    Bioinformatics; 2003; 19 Suppl 1():i66-73. PubMed ID: 12855439
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Modeling RNA folding paths with pseudoknots: application to hepatitis delta virus ribozyme.
    Isambert H; Siggia ED
    Proc Natl Acad Sci U S A; 2000 Jun; 97(12):6515-20. PubMed ID: 10823910
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A graph theoretical approach for predicting common RNA secondary structure motifs including pseudoknots in unaligned sequences.
    Ji Y; Xu X; Stormo GD
    Bioinformatics; 2004 Jul; 20(10):1591-602. PubMed ID: 14962926
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Design, implementation and evaluation of a practical pseudoknot folding algorithm based on thermodynamics.
    Reeder J; Giegerich R
    BMC Bioinformatics; 2004 Aug; 5():104. PubMed ID: 15294028
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Assembly mechanisms of RNA pseudoknots are determined by the stabilities of constituent secondary structures.
    Cho SS; Pincus DL; Thirumalai D
    Proc Natl Acad Sci U S A; 2009 Oct; 106(41):17349-54. PubMed ID: 19805055
    [TBL] [Abstract][Full Text] [Related]  

  • 52. RNA folding at elementary step resolution.
    Flamm C; Fontana W; Hofacker IL; Schuster P
    RNA; 2000 Mar; 6(3):325-38. PubMed ID: 10744018
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Prediction of RNA secondary structure including pseudoknots for long sequences.
    Sato K; Kato Y
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34601552
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Pseudoknots in RNA secondary structures: representation, enumeration, and prevalence.
    Rødland EA
    J Comput Biol; 2006; 13(6):1197-213. PubMed ID: 16901237
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Prediction of RNA pseudoknots using heuristic modeling with mapping and sequential folding.
    Dawson WK; Fujiwara K; Kawai G
    PLoS One; 2007 Sep; 2(9):e905. PubMed ID: 17878940
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A sensitivity analysis of RNA folding nearest neighbor parameters identifies a subset of free energy parameters with the greatest impact on RNA secondary structure prediction.
    Zuber J; Sun H; Zhang X; McFadyen I; Mathews DH
    Nucleic Acids Res; 2017 Jun; 45(10):6168-6176. PubMed ID: 28334976
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A graphical tool for parametric simulation of the RNA structure formation.
    Han K
    Mol Cells; 2000 Jun; 10(3):348-55. PubMed ID: 10901175
    [TBL] [Abstract][Full Text] [Related]  

  • 58. CyloFold: secondary structure prediction including pseudoknots.
    Bindewald E; Kluth T; Shapiro BA
    Nucleic Acids Res; 2010 Jul; 38(Web Server issue):W368-72. PubMed ID: 20501603
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Exact calculation of loop formation probability identifies folding motifs in RNA secondary structures.
    Sloma MF; Mathews DH
    RNA; 2016 Dec; 22(12):1808-1818. PubMed ID: 27852924
    [TBL] [Abstract][Full Text] [Related]  

  • 60. ILM: a web server for predicting RNA secondary structures with pseudoknots.
    Ruan J; Stormo GD; Zhang W
    Nucleic Acids Res; 2004 Jul; 32(Web Server issue):W146-9. PubMed ID: 15215368
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.