BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 14676320)

  • 1. Electroosmotic enhancement of the binding of a neutral molecule to a transmembrane pore.
    Gu LQ; Cheley S; Bayley H
    Proc Natl Acad Sci U S A; 2003 Dec; 100(26):15498-503. PubMed ID: 14676320
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prolonged residence time of a noncovalent molecular adapter, beta-cyclodextrin, within the lumen of mutant alpha-hemolysin pores.
    Gu LQ; Cheley S; Bayley H
    J Gen Physiol; 2001 Nov; 118(5):481-94. PubMed ID: 11696607
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interaction of the noncovalent molecular adapter, beta-cyclodextrin, with the staphylococcal alpha-hemolysin pore.
    Gu LQ; Bayley H
    Biophys J; 2000 Oct; 79(4):1967-75. PubMed ID: 11023901
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reversal of charge selectivity in transmembrane protein pores by using noncovalent molecular adapters.
    Gu LQ; Dalla Serra M; Vincent JB; Vigh G; Cheley S; Braha O; Bayley H
    Proc Natl Acad Sci U S A; 2000 Apr; 97(8):3959-64. PubMed ID: 10760267
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Capture of a single molecule in a nanocavity.
    Gu LQ; Cheley S; Bayley H
    Science; 2001 Jan; 291(5504):636-40. PubMed ID: 11158673
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ion selectivity of alpha-hemolysin with a beta-cyclodextrin adapter. I. Single ion potential of mean force and diffusion coefficient.
    Luo Y; Egwolf B; Walters DE; Roux B
    J Phys Chem B; 2010 Jan; 114(2):952-8. PubMed ID: 20041673
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Symmetry requirements for effective blocking of pore-forming toxins: comparative study with alpha-, beta-, and gamma-cyclodextrin derivatives.
    Yannakopoulou K; Jicsinszky L; Aggelidou C; Mourtzis N; Robinson TM; Yohannes A; Nestorovich EM; Bezrukov SM; Karginov VA
    Antimicrob Agents Chemother; 2011 Jul; 55(7):3594-7. PubMed ID: 21555769
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tuning the cavity of cyclodextrins: altered sugar adaptors in protein pores.
    Li WW; Claridge TD; Li Q; Wormald MR; Davis BG; Bayley H
    J Am Chem Soc; 2011 Feb; 133(6):1987-2001. PubMed ID: 21244029
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular bases of cyclodextrin adapter interactions with engineered protein nanopores.
    Banerjee A; Mikhailova E; Cheley S; Gu LQ; Montoya M; Nagaoka Y; Gouaux E; Bayley H
    Proc Natl Acad Sci U S A; 2010 May; 107(18):8165-70. PubMed ID: 20400691
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Imaging alpha-hemolysin with molecular dynamics: ionic conductance, osmotic permeability, and the electrostatic potential map.
    Aksimentiev A; Schulten K
    Biophys J; 2005 Jun; 88(6):3745-61. PubMed ID: 15764651
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ion channels and bacterial infection: the case of beta-barrel pore-forming protein toxins of Staphylococcus aureus.
    Menestrina G; Dalla Serra M; Comai M; Coraiola M; Viero G; Werner S; Colin DA; Monteil H; Prévost G
    FEBS Lett; 2003 Sep; 552(1):54-60. PubMed ID: 12972152
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interactions of peptides with a protein pore.
    Movileanu L; Schmittschmitt JP; Scholtz JM; Bayley H
    Biophys J; 2005 Aug; 89(2):1030-45. PubMed ID: 15923222
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impact of distant charge reversals within a robust beta-barrel protein pore.
    Mohammad MM; Movileanu L
    J Phys Chem B; 2010 Jul; 114(26):8750-9. PubMed ID: 20540583
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Key residues for membrane binding, oligomerization, and pore forming activity of staphylococcal alpha-hemolysin identified by cysteine scanning mutagenesis and targeted chemical modification.
    Walker B; Bayley H
    J Biol Chem; 1995 Sep; 270(39):23065-71. PubMed ID: 7559447
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simultaneous measurement of ionic current and fluorescence from single protein pores.
    Heron AJ; Thompson JR; Cronin B; Bayley H; Wallace MI
    J Am Chem Soc; 2009 Feb; 131(5):1652-3. PubMed ID: 19146373
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The internal cavity of the staphylococcal alpha-hemolysin pore accommodates approximately 175 exogenous amino acid residues.
    Jung Y; Cheley S; Braha O; Bayley H
    Biochemistry; 2005 Jun; 44(25):8919-29. PubMed ID: 15966717
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Subunit dimers of alpha-hemolysin expand the engineering toolbox for protein nanopores.
    Hammerstein AF; Jayasinghe L; Bayley H
    J Biol Chem; 2011 Apr; 286(16):14324-34. PubMed ID: 21324910
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crystal structure of the octameric pore of staphylococcal γ-hemolysin reveals the β-barrel pore formation mechanism by two components.
    Yamashita K; Kawai Y; Tanaka Y; Hirano N; Kaneko J; Tomita N; Ohta M; Kamio Y; Yao M; Tanaka I
    Proc Natl Acad Sci U S A; 2011 Oct; 108(42):17314-9. PubMed ID: 21969538
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Location of a constriction in the lumen of a transmembrane pore by targeted covalent attachment of polymer molecules.
    Movileanu L; Cheley S; Howorka S; Braha O; Bayley H
    J Gen Physiol; 2001 Mar; 117(3):239-52. PubMed ID: 11222628
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Carriers versus adapters in stochastic sensing.
    Braha O; Webb J; Gu LQ; Kim K; Bayley H
    Chemphyschem; 2005 May; 6(5):889-92. PubMed ID: 15884071
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 11.