BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

259 related articles for article (PubMed ID: 14677109)

  • 1. [EEG-based communication--a new concept for rehabilitative support in patients with severe motor impairment].
    Neuper C; Müller GR; Staiger-Sälzer P; Skliris D; Kübler A; Birbaumer N; Pfurtscheller G
    Rehabilitation (Stuttg); 2003 Dec; 42(6):371-7. PubMed ID: 14677109
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Clinical application of an EEG-based brain-computer interface: a case study in a patient with severe motor impairment.
    Neuper C; Müller GR; Kübler A; Birbaumer N; Pfurtscheller G
    Clin Neurophysiol; 2003 Mar; 114(3):399-409. PubMed ID: 12705420
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Implementation of a telemonitoring system for the control of an EEG-based brain-computer interface.
    Müller GR; Neuper C; Pfurtscheller G
    IEEE Trans Neural Syst Rehabil Eng; 2003 Mar; 11(1):54-9. PubMed ID: 12797726
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The thought-translation device (TTD): neurobehavioral mechanisms and clinical outcome.
    Birbaumer N; Hinterberger T; Kübler A; Neumann N
    IEEE Trans Neural Syst Rehabil Eng; 2003 Jun; 11(2):120-3. PubMed ID: 12899251
    [TBL] [Abstract][Full Text] [Related]  

  • 5. How many people are able to control a P300-based brain-computer interface (BCI)?
    Guger C; Daban S; Sellers E; Holzner C; Krausz G; Carabalona R; Gramatica F; Edlinger G
    Neurosci Lett; 2009 Oct; 462(1):94-8. PubMed ID: 19545601
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neurofeedback-based motor imagery training for brain-computer interface (BCI).
    Hwang HJ; Kwon K; Im CH
    J Neurosci Methods; 2009 Apr; 179(1):150-6. PubMed ID: 19428521
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Motor imagery and EEG-based control of spelling devices and neuroprostheses.
    Neuper C; Müller-Putz GR; Scherer R; Pfurtscheller G
    Prog Brain Res; 2006; 159():393-409. PubMed ID: 17071244
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Voluntary brain regulation and communication with electrocorticogram signals.
    Hinterberger T; Widman G; Lal TN; Hill J; Tangermann M; Rosenstiel W; Schölkopf B; Elger C; Birbaumer N
    Epilepsy Behav; 2008 Aug; 13(2):300-6. PubMed ID: 18495541
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conversion of EEG activity into cursor movement by a brain-computer interface (BCI).
    Fabiani GE; McFarland DJ; Wolpaw JR; Pfurtscheller G
    IEEE Trans Neural Syst Rehabil Eng; 2004 Sep; 12(3):331-8. PubMed ID: 15473195
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An asynchronously controlled EEG-based virtual keyboard: improvement of the spelling rate.
    Scherer R; Müller GR; Neuper C; Graimann B; Pfurtscheller G
    IEEE Trans Biomed Eng; 2004 Jun; 51(6):979-84. PubMed ID: 15188868
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Motor imagery and action observation: modulation of sensorimotor brain rhythms during mental control of a brain-computer interface.
    Neuper C; Scherer R; Wriessnegger S; Pfurtscheller G
    Clin Neurophysiol; 2009 Feb; 120(2):239-47. PubMed ID: 19121977
    [TBL] [Abstract][Full Text] [Related]  

  • 12. EEG-based brain computer interface (BCI). Search for optimal electrode positions and frequency components.
    Pfurtscheller G; Flotzinger D; Pregenzer M; Wolpaw JR; McFarland D
    Med Prog Technol; 1995-1996; 21(3):111-21. PubMed ID: 8776708
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Berlin Brain--Computer Interface: accurate performance from first-session in BCI-naïve subjects.
    Blankertz B; Losch F; Krauledat M; Dornhege G; Curio G; Müller KR
    IEEE Trans Biomed Eng; 2008 Oct; 55(10):2452-62. PubMed ID: 18838371
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Current trends in Graz Brain-Computer Interface (BCI) research.
    Pfurtscheller G; Neuper C; Guger C; Harkam W; Ramoser H; Schlögl A; Obermaier B; Pregenzer M
    IEEE Trans Rehabil Eng; 2000 Jun; 8(2):216-9. PubMed ID: 10896192
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Brain-computer interfaces for 1-D and 2-D cursor control: designs using volitional control of the EEG spectrum or steady-state visual evoked potentials.
    Trejo LJ; Rosipal R; Matthews B
    IEEE Trans Neural Syst Rehabil Eng; 2006 Jun; 14(2):225-9. PubMed ID: 16792300
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Machine learning for real-time single-trial EEG-analysis: from brain-computer interfacing to mental state monitoring.
    Müller KR; Tangermann M; Dornhege G; Krauledat M; Curio G; Blankertz B
    J Neurosci Methods; 2008 Jan; 167(1):82-90. PubMed ID: 18031824
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Brain-computer interface using a simplified functional near-infrared spectroscopy system.
    Coyle SM; Ward TE; Markham CM
    J Neural Eng; 2007 Sep; 4(3):219-26. PubMed ID: 17873424
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exploring virtual environments with an EEG-based BCI through motor imagery.
    Leeb R; Scherer R; Keinrath C; Guger C; Pfurtscheller G
    Biomed Tech (Berl); 2005 Apr; 50(4):86-91. PubMed ID: 15884704
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The non-invasive Berlin Brain-Computer Interface: fast acquisition of effective performance in untrained subjects.
    Blankertz B; Dornhege G; Krauledat M; Müller KR; Curio G
    Neuroimage; 2007 Aug; 37(2):539-50. PubMed ID: 17475513
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Brain-computer interface (BCI) operation: signal and noise during early training sessions.
    McFarland DJ; Sarnacki WA; Vaughan TM; Wolpaw JR
    Clin Neurophysiol; 2005 Jan; 116(1):56-62. PubMed ID: 15589184
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.