These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
257 related articles for article (PubMed ID: 14677137)
41. Deep-skin multiphoton microscopy in vivo excited at 1600 nm: A comparative investigation with silicone oil and deuterium dioxide immersion. Wang K; Pan Y; Tong S; Chen X; Lu Y; Qiu P J Biophotonics; 2021 Oct; 14(10):e202100076. PubMed ID: 34160142 [TBL] [Abstract][Full Text] [Related]
42. Spherical aberration correction in multiphoton fluorescence imaging using objective correction collar. Lo W; Sun Y; Lin SJ; Jee SH; Dong CY J Biomed Opt; 2005; 10(3):034006. PubMed ID: 16229650 [TBL] [Abstract][Full Text] [Related]
43. Spectral fluorescence lifetime detection and selective melanin imaging by multiphoton laser tomography for melanoma diagnosis. Dimitrow E; Riemann I; Ehlers A; Koehler MJ; Norgauer J; Elsner P; König K; Kaatz M Exp Dermatol; 2009 Jun; 18(6):509-15. PubMed ID: 19243426 [TBL] [Abstract][Full Text] [Related]
44. Two-photon fluorescence correlation microscopy combined with measurements of point spread function; investigations made in human skin. Guldbrand S; Simonsson C; Goksör M; Smedh M; Ericson MB Opt Express; 2010 Jul; 18(15):15289-302. PubMed ID: 20720906 [TBL] [Abstract][Full Text] [Related]
45. Two-photon excited fluorescence of a conjugated polyelectrolyte and its application in cell imaging. Parthasarathy A; Ahn HY; Belfield KD; Schanze KS ACS Appl Mater Interfaces; 2010 Oct; 2(10):2744-8. PubMed ID: 20939595 [TBL] [Abstract][Full Text] [Related]
46. Confocal and multi-photon microscopy of dental hard tissues and biomaterials. Watson TF; Azzopardi A; Etman M; Cheng PC; Sidhu SK Am J Dent; 2000 Nov; 13(Spec No):19D-24D. PubMed ID: 11763913 [TBL] [Abstract][Full Text] [Related]
47. Three dimensional live-cell STED microscopy at increased depth using a water immersion objective. Heine J; Wurm CA; Keller-Findeisen J; Schönle A; Harke B; Reuss M; Winter FR; Donnert G Rev Sci Instrum; 2018 May; 89(5):053701. PubMed ID: 29864829 [TBL] [Abstract][Full Text] [Related]
48. Quantified characterization of human cutaneous normal scar using multiphoton microscopy. Zhu X; Zhuo S; Zheng L; Lu K; Jiang X; Chen J; Lin B J Biophotonics; 2010 Jan; 3(1-2):108-16. PubMed ID: 19768706 [TBL] [Abstract][Full Text] [Related]
49. Deep-brain three-photon microscopy excited at 1600 nm with silicone oil immersion. Tong S; Liu H; Cheng H; He C; Du Y; Zhuang Z; Qiu P; Wang K J Biophotonics; 2019 Jun; 12(6):e201800423. PubMed ID: 30801979 [TBL] [Abstract][Full Text] [Related]
50. Note: Dynamic point spread function for single and multiphoton fluorescence microscopy. Mondal PP; Mandal S; Diaspro A Rev Sci Instrum; 2010 Apr; 81(4):046103. PubMed ID: 20441376 [TBL] [Abstract][Full Text] [Related]
51. Efficient large core fiber-based detection for multi-channel two-photon fluorescence microscopy and spectral unmixing. Ducros M; van 't Hoff M; Evrard A; Seebacher C; Schmidt EM; Charpak S; Oheim M J Neurosci Methods; 2011 Jun; 198(2):172-80. PubMed ID: 21458489 [TBL] [Abstract][Full Text] [Related]
52. Intravital two-photon imaging: a versatile tool for dissecting the immune system. Ishii T; Ishii M Ann Rheum Dis; 2011 Mar; 70 Suppl 1():i113-5. PubMed ID: 21339213 [TBL] [Abstract][Full Text] [Related]
53. Phasor analysis of multiphoton spectral images distinguishes autofluorescence components of in vivo human skin. Fereidouni F; Bader AN; Colonna A; Gerritsen HC J Biophotonics; 2014 Aug; 7(8):589-96. PubMed ID: 23576407 [TBL] [Abstract][Full Text] [Related]
54. Quantitative evaluation of healthy epidermis by means of multiphoton microscopy and fluorescence lifetime imaging microscopy. Benati E; Bellini V; Borsari S; Dunsby C; Ferrari C; French P; Guanti M; Guardoli D; Koenig K; Pellacani G; Ponti G; Schianchi S; Talbot C; Seidenari S Skin Res Technol; 2011 Aug; 17(3):295-303. PubMed ID: 21518012 [TBL] [Abstract][Full Text] [Related]
56. A specific probe for two-photon fluorescence lysosomal imaging. Wu Z; Tang M; Tian T; Wu J; Deng Y; Dong X; Tan Z; Weng X; Liu Z; Wang C; Zhou X Talanta; 2011 Dec; 87():216-21. PubMed ID: 22099670 [TBL] [Abstract][Full Text] [Related]
57. Resolution enhancement through microscopic spatiotemporal control. Goswami D; Das D; Bandyopadhyay SN Faraday Discuss; 2015; 177():203-12. PubMed ID: 25623778 [TBL] [Abstract][Full Text] [Related]
58. An optical pressure chamber designed for high numerical aperture studies on adherent living cells. Pagliaro L; Reitz F; Wang J Undersea Hyperb Med; 1995 Jun; 22(2):171-81. PubMed ID: 7633279 [TBL] [Abstract][Full Text] [Related]
59. Refractive index and pulse broadening characterization using oil immersion and its influence on three-photon microscopy excited at the 1700-nm window. Zhuang Z; He C; Du Y; Wen W; Zhang G; Zhao Y; Tao M; Hu Z; Wang K; Qiu P J Biophotonics; 2019 Feb; 12(2):e201800263. PubMed ID: 30239164 [TBL] [Abstract][Full Text] [Related]
60. A new high-aperture glycerol immersion objective lens and its application to 3D-fluorescence microscopy. Martini N; Bewersdorf J; Hell SW J Microsc; 2002 May; 206(Pt 2):146-51. PubMed ID: 12000554 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]