These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 14677379)

  • 41. Temporal facilitation prior to voluntary muscle relaxation.
    Sugawara K; Tanabe S; Higashi T; Tsurumi T; Kasai T
    Int J Neurosci; 2009; 119(3):442-52. PubMed ID: 19116847
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Magnetic stimulation of motor cortex in children: maturity of corticospinal pathway and problem of clinical application.
    Nezu A; Kimura S; Uehara S; Kobayashi T; Tanaka M; Saito K
    Brain Dev; 1997 Apr; 19(3):176-80. PubMed ID: 9134188
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Repetitive activation of the corticospinal pathway by means of rTMS may reduce the efficiency of corticomotoneuronal synapses.
    Taube W; Leukel C; Nielsen JB; Lundbye-Jensen J
    Cereb Cortex; 2015 Jun; 25(6):1629-37. PubMed ID: 24408957
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Does hand dominance affect peripheral nerve excitability?
    Tsuji Y; Noto Y; Shiga K; Yokota I; Nakagawa M; Mizuno T
    Clin Neurophysiol; 2016 Apr; 127(4):1921-2. PubMed ID: 26971471
    [No Abstract]   [Full Text] [Related]  

  • 45. Preservation of central motor conduction in patients with spinal muscular atrophy type II.
    Imai T; Matsuya M; Matsumoto H; Ishikawa Y; Minami R
    Brain Dev; 1995; 17(6):432-5. PubMed ID: 8747423
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Magnetic brain stimulation: central motor conduction studies in multiple sclerosis.
    Hess CW; Mills KR; Murray NM; Schriefer TN
    Ann Neurol; 1987 Dec; 22(6):744-52. PubMed ID: 3435084
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Corticospinal output during muscular fatigue differs in multiple sclerosis patients compared to healthy controls.
    Scheidegger O; Kamm CP; Humpert SJ; Rösler KM
    Mult Scler; 2012 Oct; 18(10):1500-6. PubMed ID: 22354741
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The value of bilateral ipsilateral and contralateral motor evoked potential monitoring in scoliosis surgery.
    Lo YL; Dan YF; Teo A; Tan YE; Yue WM; Raman S; Tan SB
    Eur Spine J; 2008 Sep; 17 Suppl 2(Suppl 2):S236-8. PubMed ID: 17874145
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Significant correlation between corticospinal tract conduction block and prolongation of central motor conduction time in compressive cervical myelopathy.
    Nakanishi K; Tanaka N; Kamei N; Hamasaki T; Nishida K; Touten Y; Ochi M
    J Neurol Sci; 2007 May; 256(1-2):71-4. PubMed ID: 17368488
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Prolonged central motor conduction time of lower limb muscle in spinocerebellar ataxia 6.
    Chen JT; Lin YY; Lee YC; Soong BW; Wu ZA; Liao KK
    J Clin Neurosci; 2004 May; 11(4):381-3. PubMed ID: 15080952
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A new method for the estimation of motor nerve conduction block.
    Mesin L; Cocito D
    Clin Neurophysiol; 2007 Apr; 118(4):730-40. PubMed ID: 17317295
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Motor mechanisms: the role of the pyramidal system in motor control.
    Brooks VB; Stoney SD
    Annu Rev Physiol; 1971; 33():337-92. PubMed ID: 4951052
    [No Abstract]   [Full Text] [Related]  

  • 53. Magnetic stimulation of human peripheral nerve and brain: response enhancement by combined magnetoelectrical technique.
    Bickford RG; Guidi M; Fortesque P; Swenson M
    Neurosurgery; 1987 Jan; 20(1):110-6. PubMed ID: 3808250
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Ontogeny of ipsilateral corticospinal projections: a developmental study with transcranial magnetic stimulation.
    Müller K; Kass-Iliyya F; Reitz M
    Ann Neurol; 1997 Nov; 42(5):705-11. PubMed ID: 9392569
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Dynamic changes in corticospinal excitability during motor imagery.
    Hashimoto R; Rothwell JC
    Exp Brain Res; 1999 Mar; 125(1):75-81. PubMed ID: 10100979
    [TBL] [Abstract][Full Text] [Related]  

  • 56. [Corticospinal tract assessment in ALS: transcranial magnetic stimulation].
    Domzał-Stryga A; Bojakowski J
    Neurol Neurochir Pol; 2001; 35(1 Suppl):71-80. PubMed ID: 11732282
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Spatial differences in the sites of direct and indirect activation of corticospinal neurones by magnetic stimulation.
    Wilson SA; Day BL; Thickbroom GW; Mastaglia FL
    Electroencephalogr Clin Neurophysiol; 1996 Jun; 101(3):255-61. PubMed ID: 8647039
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Noninvasive stimulation of human corticospinal axons innervating leg muscles.
    Martin PG; Butler JE; Gandevia SC; Taylor JL
    J Neurophysiol; 2008 Aug; 100(2):1080-6. PubMed ID: 18509069
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Vitamin B12 status does not influence central motor conduction time in asymptomatic elderly people: a transcranial magnetic stimulation study.
    Matamala JM; Nuñez C; Verdugo RJ; Lera L; Sánchez H; Albala C; Castillo JL
    Somatosens Mot Res; 2014 Sep; 31(3):136-40. PubMed ID: 24694205
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Neurophysiological mechanisms underlying motor evoked potentials in anesthetized humans. Part 1. Recovery time of corticospinal tract direct waves elicited by pairs of transcranial electrical stimuli.
    Deletis V; Isgum V; Amassian VE
    Clin Neurophysiol; 2001 Mar; 112(3):438-44. PubMed ID: 11222964
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.