BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 14677387)

  • 1. Motor cortical and other cortical interneuronal networks that generate very high frequency waves.
    Amassian VE; Stewart M
    Suppl Clin Neurophysiol; 2003; 56():119-42. PubMed ID: 14677387
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The contribution of transcranial magnetic stimulation in the functional evaluation of microcircuits in human motor cortex.
    Di Lazzaro V; Ziemann U
    Front Neural Circuits; 2013; 7():18. PubMed ID: 23407686
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cortical activity after stimulation of the corticospinal tract in the spinal cord.
    Costa P; Deletis V
    Clin Neurophysiol; 2016 Feb; 127(2):1726-1733. PubMed ID: 26679418
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Corticospinal volleys evoked by transcranial stimulation of the brain in conscious humans.
    Di Lazzaro V; Oliviero A; Pilato F; Mazzone P; Insola A; Ranieri F; Tonali PA
    Neurol Res; 2003 Mar; 25(2):143-50. PubMed ID: 12635512
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Physiological basis of motor effects of a transient stimulus to cerebral cortex.
    Amassian VE; Stewart M; Quirk GJ; Rosenthal JL
    Neurosurgery; 1987 Jan; 20(1):74-93. PubMed ID: 3543727
    [TBL] [Abstract][Full Text] [Related]  

  • 6. I-waves in motor cortex revisited.
    Ziemann U
    Exp Brain Res; 2020 Aug; 238(7-8):1601-1610. PubMed ID: 32185405
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synchronous activity of inhibitory networks in neocortex requires electrical synapses containing connexin36.
    Deans MR; Gibson JR; Sellitto C; Connors BW; Paul DL
    Neuron; 2001 Aug; 31(3):477-85. PubMed ID: 11516403
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A network of fast-spiking cells in the neocortex connected by electrical synapses.
    Galarreta M; Hestrin S
    Nature; 1999 Nov; 402(6757):72-5. PubMed ID: 10573418
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sensorimotor cortical influences on cuneate nucleus rhythmic activity in the anesthetized cat.
    Marino J; Canedo A; Aguilar J
    Neuroscience; 2000; 95(3):657-73. PubMed ID: 10670434
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Basic mechanisms of TMS.
    Terao Y; Ugawa Y
    J Clin Neurophysiol; 2002 Aug; 19(4):322-43. PubMed ID: 12436088
    [TBL] [Abstract][Full Text] [Related]  

  • 11. State of the art: Physiology of transcranial motor cortex stimulation.
    Di Lazzaro V; Ziemann U; Lemon RN
    Brain Stimul; 2008 Oct; 1(4):345-62. PubMed ID: 20633393
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transcranial direct current stimulation effects on the excitability of corticospinal axons of the human cerebral cortex.
    Di Lazzaro V; Ranieri F; Profice P; Pilato F; Mazzone P; Capone F; Insola A; Oliviero A
    Brain Stimul; 2013 Jul; 6(4):641-3. PubMed ID: 23085442
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synchronization of GABAergic interneuronal networks during seizure-like activity in the rat horizontal hippocampal slice.
    Velazquez JL; Carlen PL
    Eur J Neurosci; 1999 Nov; 11(11):4110-8. PubMed ID: 10583499
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neurophysiological mechanisms underlying motor evoked potentials in anesthetized humans. Part 1. Recovery time of corticospinal tract direct waves elicited by pairs of transcranial electrical stimuli.
    Deletis V; Isgum V; Amassian VE
    Clin Neurophysiol; 2001 Mar; 112(3):438-44. PubMed ID: 11222964
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct demonstration of the effects of repetitive transcranial magnetic stimulation on the excitability of the human motor cortex.
    Di Lazzaro V; Oliviero A; Berardelli A; Mazzone P; Insola A; Pilato F; Saturno E; Dileone M; Tonali PA; Rothwell JC
    Exp Brain Res; 2002 Jun; 144(4):549-53. PubMed ID: 12037639
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synchronization in monkey motor cortex during a precision grip task. II. effect of oscillatory activity on corticospinal output.
    Baker SN; Pinches EM; Lemon RN
    J Neurophysiol; 2003 Apr; 89(4):1941-53. PubMed ID: 12686573
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Participation of interneurons in penicillin-induced epileptic discharges.
    Domann R; Uhlig S; Dorn T; Witte OW
    Exp Brain Res; 1991; 83(3):683-6. PubMed ID: 2026210
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Generation of I waves in the human: spinal recordings.
    Di Lazzaro V; Oliviero A; Mazzone P; Pilato F; Saturno E; Dileone M; Tonali PA
    Suppl Clin Neurophysiol; 2003; 56():143-52. PubMed ID: 14677388
    [No Abstract]   [Full Text] [Related]  

  • 19. Recruitment of Additional Corticospinal Pathways in the Human Brain with State-Dependent Paired Associative Stimulation.
    Kraus D; Naros G; Guggenberger R; Leão MT; Ziemann U; Gharabaghi A
    J Neurosci; 2018 Feb; 38(6):1396-1407. PubMed ID: 29335359
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Existing motor state is favored at the expense of new movement during 13-35 Hz oscillatory synchrony in the human corticospinal system.
    Gilbertson T; Lalo E; Doyle L; Di Lazzaro V; Cioni B; Brown P
    J Neurosci; 2005 Aug; 25(34):7771-9. PubMed ID: 16120778
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.