These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 14677412)

  • 21. Mechanisms of motor-evoked potential facilitation following prolonged dual peripheral and central stimulation in humans.
    Ridding MC; Taylor JL
    J Physiol; 2001 Dec; 537(Pt 2):623-31. PubMed ID: 11731592
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Epidural cortical stimulation enhances motor function after sensorimotor cortical infarcts in rats.
    Adkins DL; Campos P; Quach D; Borromeo M; Schallert K; Jones TA
    Exp Neurol; 2006 Aug; 200(2):356-70. PubMed ID: 16678818
    [TBL] [Abstract][Full Text] [Related]  

  • 23. fMRI studies of eye movement control: investigating the interaction of cognitive and sensorimotor brain systems.
    Sweeney JA; Luna B; Keedy SK; McDowell JE; Clementz BA
    Neuroimage; 2007; 36 Suppl 2(Suppl 2):T54-60. PubMed ID: 17499170
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A physiological study of rostral dominance in simultaneously applied ipsilateral somatosensory stimuli.
    Cohn R
    Mt Sinai J Med; 1974; 41(1):76-81. PubMed ID: 4544517
    [No Abstract]   [Full Text] [Related]  

  • 25. Sensorimotor lateralization scaffolds cognitive specialization.
    Gonzalez CLR; van Rootselaar NA; Gibb RL
    Prog Brain Res; 2018; 238():405-433. PubMed ID: 30097202
    [TBL] [Abstract][Full Text] [Related]  

  • 26. LTP-like changes induced by paired associative stimulation of the primary somatosensory cortex in humans: source analysis and associated changes in behaviour.
    Litvak V; Zeller D; Oostenveld R; Maris E; Cohen A; Schramm A; Gentner R; Zaaroor M; Pratt H; Classen J
    Eur J Neurosci; 2007 May; 25(9):2862-74. PubMed ID: 17561848
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Intracerebral study of gamma rhythm reactivity in the sensorimotor cortex.
    Szurhaj W; Bourriez JL; Kahane P; Chauvel P; Mauguière F; Derambure P
    Eur J Neurosci; 2005 Mar; 21(5):1223-35. PubMed ID: 15813932
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Pharmacological suppression of plastic changes in human primary somatosensory cortex after motor learning.
    Pleger B; Schwenkreis P; Dinse HR; Ragert P; Höffken O; Malin JP; Tegenthoff M
    Exp Brain Res; 2003 Feb; 148(4):525-32. PubMed ID: 12582838
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Prolonged peripheral nerve stimulation induces persistent changes in excitability of human motor cortex.
    Charlton CS; Ridding MC; Thompson PD; Miles TS
    J Neurol Sci; 2003 Apr; 208(1-2):79-85. PubMed ID: 12639729
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Basic mechanisms of TMS.
    Terao Y; Ugawa Y
    J Clin Neurophysiol; 2002 Aug; 19(4):322-43. PubMed ID: 12436088
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Association between stimulus-evoked somatosensory inhibition and movement-related sensorimotor oscillation: A magnetoencephalographic study.
    Hsiao FJ; Chen WT; Lin YY
    Neurosci Lett; 2018 Jan; 664():74-78. PubMed ID: 29128631
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Is the Frequency in Somatosensory Electrical Stimulation the Key Parameter in Modulating the Corticospinal Excitability of Healthy Volunteers and Stroke Patients with Spasticity?
    Garcia MA; Catunda JM; de Souza MN; Fontana AP; Sperandei S; Vargas CD
    Neural Plast; 2016; 2016():3034963. PubMed ID: 26881102
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Impact of sensorimotor training on the rate of force development and neural activation.
    Gruber M; Gollhofer A
    Eur J Appl Physiol; 2004 Jun; 92(1-2):98-105. PubMed ID: 15024669
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Proprioceptive activity in primate primary somatosensory cortex during active arm reaching movements.
    Prud'homme MJ; Kalaska JF
    J Neurophysiol; 1994 Nov; 72(5):2280-301. PubMed ID: 7884459
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Impairment of learning the voluntary control of posture in patients with cortical lesions of different locations: the cortical mechanisms of pose regulation.
    Ustinova KI; Chernikova LA; Ioffe ME; Sliva SS
    Neurosci Behav Physiol; 2001; 31(3):259-67. PubMed ID: 11430569
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Resetting voluntary movement using peripheral nerve stimulation: influence of loading conditions and relative effectiveness.
    Colebatch JG; Wagener DS
    Exp Brain Res; 1999 Mar; 125(1):67-74. PubMed ID: 10100978
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Sensorimotor cortex excitability in Unverricht-Lundborg disease and Lafora body disease.
    Canafoglia L; Ciano C; Panzica F; Scaioli V; Zucca C; Agazzi P; Visani E; Avanzini G; Franceschetti S
    Neurology; 2004 Dec; 63(12):2309-15. PubMed ID: 15623692
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Hemispheric differences in the relationship between corticomotor excitability changes following a fine-motor task and motor learning.
    Garry MI; Kamen G; Nordstrom MA
    J Neurophysiol; 2004 Apr; 91(4):1570-8. PubMed ID: 14627660
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Magnetic stimulation of the human peripheral nerves.
    Chokroverty S
    Electromyogr Clin Neurophysiol; 1989; 29(7-8):409-16. PubMed ID: 2606066
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Locus coeruleus activation shortens synaptic drive while decreasing spike latency and jitter in sensorimotor cortex. Implications for neuronal integration.
    Lecas JC
    Eur J Neurosci; 2004 May; 19(9):2519-30. PubMed ID: 15128405
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.