BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 14677648)

  • 1. Lower active force generation and improved fatigue resistance in skeletal muscle from desmin deficient mice.
    Balogh J; Li Z; Paulin D; Arner A
    J Muscle Res Cell Motil; 2003; 24(7):453-9. PubMed ID: 14677648
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Generation of tension by skinned fibers and intact skeletal muscles from desmin-deficient mice.
    Wieneke S; Stehle R; Li Z; Jockusch H
    Biochem Biophys Res Commun; 2000 Nov; 278(2):419-25. PubMed ID: 11097852
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanical alterations in smooth muscle from mice lacking desmin.
    Sjuve R; Arner A; Li Z; Mies B; Paulin D; Schmittner M; Small JV
    J Muscle Res Cell Motil; 1998 May; 19(4):415-29. PubMed ID: 9635284
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Desmin filaments influence myofilament spacing and lateral compliance of slow skeletal muscle fibers.
    Balogh J; Li Z; Paulin D; Arner A
    Biophys J; 2005 Feb; 88(2):1156-65. PubMed ID: 15542565
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hearts from mice lacking desmin have a myopathy with impaired active force generation and unaltered wall compliance.
    Balogh J; Merisckay M; Li Z; Paulin D; Arner A
    Cardiovasc Res; 2002 Feb; 53(2):439-50. PubMed ID: 11827695
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improved fatigue resistance in Gsα-deficient and aging mouse skeletal muscles due to adaptive increases in slow fibers.
    Feng HZ; Chen M; Weinstein LS; Jin JP
    J Appl Physiol (1985); 2011 Sep; 111(3):834-43. PubMed ID: 21680879
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of troponin C in modulating the Ca2+ sensitivity of mammalian skinned cardiac and skeletal muscle fibres.
    Palmer S; Kentish JC
    J Physiol; 1994 Oct; 480 ( Pt 1)(Pt 1):45-60. PubMed ID: 7853225
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of desmin in active force transmission and maintenance of structure during growth of urinary bladder.
    Scott RS; Li Z; Paulin D; Uvelius B; Small JV; Arner A
    Am J Physiol Cell Physiol; 2008 Aug; 295(2):C324-31. PubMed ID: 18562479
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancement of force generated by individual myosin heads in skinned rabbit psoas muscle fibers at low ionic strength.
    Sugi H; Abe T; Kobayashi T; Chaen S; Ohnuki Y; Saeki Y; Sugiura S
    PLoS One; 2013; 8(5):e63658. PubMed ID: 23691080
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of elevations in intracellular [Ca2+] in the development of low frequency fatigue in mouse single muscle fibres.
    Chin ER; Allen DG
    J Physiol; 1996 Mar; 491 ( Pt 3)(Pt 3):813-24. PubMed ID: 8815213
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of myoplasmic phosphate in contractile function of skeletal muscle: studies on creatine kinase-deficient mice.
    Dahlstedt AJ; Katz A; Westerblad H
    J Physiol; 2001 Jun; 533(Pt 2):379-88. PubMed ID: 11389199
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mitochondrial and myoplasmic [Ca2+] in single fibres from mouse limb muscles during repeated tetanic contractions.
    Bruton J; Tavi P; Aydin J; Westerblad H; Lännergren J
    J Physiol; 2003 Aug; 551(Pt 1):179-90. PubMed ID: 12815178
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Passive stiffness changes in soleus muscles from desmin knockout mice are not due to titin modifications.
    Anderson J; Joumaa V; Stevens L; Neagoe C; Li Z; Mounier Y; Linke WA; Goubel F
    Pflugers Arch; 2002 Sep; 444(6):771-6. PubMed ID: 12355177
    [TBL] [Abstract][Full Text] [Related]  

  • 14. KATP channel deficiency in mouse flexor digitorum brevis causes fibre damage and impairs Ca2+ release and force development during fatigue in vitro.
    Cifelli C; Bourassa F; Gariépy L; Banas K; Benkhalti M; Renaud JM
    J Physiol; 2007 Jul; 582(Pt 2):843-57. PubMed ID: 17510189
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanical function of intermediate filaments in arteries of different size examined using desmin deficient mice.
    Wede OK; Löfgren M; Li Z; Paulin D; Arner A
    J Physiol; 2002 May; 540(Pt 3):941-9. PubMed ID: 11986381
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of myoplasmic Ca(2+) in genetically obese (ob/ob) mouse single skeletal muscle fibres.
    Bruton JD; Katz A; Lännergren J; Abbate F; Westerblad H
    Pflugers Arch; 2002 Sep; 444(6):692-9. PubMed ID: 12355168
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mitochondrial function in intact skeletal muscle fibres of creatine kinase deficient mice.
    Bruton JD; Dahlstedt AJ; Abbate F; Westerblad H
    J Physiol; 2003 Oct; 552(Pt 2):393-402. PubMed ID: 14561823
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reactive oxygen species and fatigue-induced prolonged low-frequency force depression in skeletal muscle fibres of rats, mice and SOD2 overexpressing mice.
    Bruton JD; Place N; Yamada T; Silva JP; Andrade FH; Dahlstedt AJ; Zhang SJ; Katz A; Larsson NG; Westerblad H
    J Physiol; 2008 Jan; 586(1):175-84. PubMed ID: 18006575
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cross-bridge binding to actin and force generation in skinned fibers of the rabbit psoas muscle in the presence of antibody fragments against the N-terminus of actin.
    Brenner B; Kraft T; DasGupta G; Reisler E
    Biophys J; 1996 Jan; 70(1):48-56. PubMed ID: 8770186
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Contractile properties of slow and fast skeletal muscles from protease activated receptor-1 null mice.
    Sitparan PK; Pagel CN; Pinniger GJ; Yoo HJ; Mackie EJ; Bakker AJ
    Muscle Nerve; 2014 Dec; 50(6):991-8. PubMed ID: 24692104
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.