These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 14677997)

  • 21. Defect-pit-assisted growth of GaN nanostructures: nanowires, nanorods and nanobelts.
    Xue S; Zhang X; Huang R; Zhuang H; Xue C
    Dalton Trans; 2008 Aug; (32):4296-302. PubMed ID: 18682869
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Synthesis of monodisperse PbSe nanorods: a case for oriented attachment.
    Koh WK; Bartnik AC; Wise FW; Murray CB
    J Am Chem Soc; 2010 Mar; 132(11):3909-13. PubMed ID: 20180556
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Synthesis of single-crystal beta-Ni(OH)2 nanodisks and alpha-Fe2O3 nanocrystals in C2H5OH-NaOH-NH3 x H2O system.
    Yang R; Gao L
    J Colloid Interface Sci; 2006 May; 297(1):134-7. PubMed ID: 16313920
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Seed-mediated synthesis of palladium nanorods and branched nanocrystals and their use as recyclable Suzuki coupling reaction catalysts.
    Chen YH; Hung HH; Huang MH
    J Am Chem Soc; 2009 Jul; 131(25):9114-21. PubMed ID: 19507854
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Rational synthesis, self-assembly, and optical properties of PbS-Au heterogeneous nanostructures via preferential deposition.
    Yang J; Elim HI; Zhang Q; Lee JY; Ji W
    J Am Chem Soc; 2006 Sep; 128(36):11921-6. PubMed ID: 16953633
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Synthesis and mechanistic study of palladium nanobars and nanorods.
    Xiong Y; Cai H; Wiley BJ; Wang J; Kim MJ; Xia Y
    J Am Chem Soc; 2007 Mar; 129(12):3665-75. PubMed ID: 17335211
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Straight and thin ZnO nanorods: hectogram-scale synthesis at low temperature and cathodoluminescence.
    Zhang H; Yang D; Ma X; Du N; Wu J; Que D
    J Phys Chem B; 2006 Jan; 110(2):827-30. PubMed ID: 16471610
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Synthesis and shape control of CuInS(2) nanoparticles.
    Kruszynska M; Borchert H; Parisi J; Kolny-Olesiak J
    J Am Chem Soc; 2010 Nov; 132(45):15976-86. PubMed ID: 20958030
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Synthesis of quantum-sized cubic ZnS nanorods by the oriented attachment mechanism.
    Yu JH; Joo J; Park HM; Baik SI; Kim YW; Kim SC; Hyeon T
    J Am Chem Soc; 2005 Apr; 127(15):5662-70. PubMed ID: 15826206
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Spontaneous self-assembly of cerium oxide nanoparticles to nanorods through supraaggregate formation.
    Kuiry SC; Patil SD; Deshpande S; Seal S
    J Phys Chem B; 2005 Apr; 109(15):6936-9. PubMed ID: 16851784
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Morphological evolution of Cu2O nanocrystals in an acid solution: stability of different crystal planes.
    Hua Q; Shang D; Zhang W; Chen K; Chang S; Ma Y; Jiang Z; Yang J; Huang W
    Langmuir; 2011 Jan; 27(2):665-71. PubMed ID: 21158400
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Nanoscale copper sulfide hollow spheres with phase-engineered composition: covellite (CuS), digenite (Cu1.8S), chalcocite (Cu2S).
    Leidinger P; Popescu R; Gerthsen D; Lünsdorf H; Feldmann C
    Nanoscale; 2011 Jun; 3(6):2544-51. PubMed ID: 21556411
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Selective facet reactivity during cation exchange in cadmium sulfide nanorods.
    Sadtler B; Demchenko DO; Zheng H; Hughes SM; Merkle MG; Dahmen U; Wang LW; Alivisatos AP
    J Am Chem Soc; 2009 Apr; 131(14):5285-93. PubMed ID: 19351206
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Morphology-controlled self-assembled nanostructures of 5,15-di[4-(5-acetylsulfanylpentyloxy)phenyl]porphyrin derivatives. Effect of metal-ligand coordination bonding on tuning the intermolecular interaction.
    Gao Y; Zhang X; Ma C; Li X; Jiang J
    J Am Chem Soc; 2008 Dec; 130(50):17044-52. PubMed ID: 19007122
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Biaxially oriented CdSe nanorods.
    Breiby DW; Chin PT; Andreasen JW; Grimsrud KA; Di Z; Janssen RA
    Langmuir; 2009 Sep; 25(18):10970-4. PubMed ID: 19572529
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Synthesis, microstructure, and cathodoluminescence of [0001]-oriented GaN nanorods grown on conductive graphite substrate.
    Yuan F; Liu B; Wang Z; Yang B; Yin Y; Dierre B; Sekiguchi T; Zhang G; Jiang X
    ACS Appl Mater Interfaces; 2013 Nov; 5(22):12066-72. PubMed ID: 24164686
    [TBL] [Abstract][Full Text] [Related]  

  • 37. From trifluoroacetate complex precursors to monodisperse rare-earth fluoride and oxyfluoride nanocrystals with diverse shapes through controlled fluorination in solution phase.
    Sun X; Zhang YW; Du YP; Yan ZG; Si R; You LP; Yan CH
    Chemistry; 2007; 13(8):2320-32. PubMed ID: 17163562
    [TBL] [Abstract][Full Text] [Related]  

  • 38. In situ X-ray diffraction study of the formation, growth, and phase transition of colloidal Cu(2-x)S nanocrystals.
    Nørby P; Johnsen S; Iversen BB
    ACS Nano; 2014 May; 8(5):4295-303. PubMed ID: 24717103
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Synthesis, optical properties, and growth mechanism of blue-emitting CdSe nanorods.
    Thoma SG; Sanchez A; Provencio PP; Abrams BL; Wilcoxon JP
    J Am Chem Soc; 2005 May; 127(20):7611-4. PubMed ID: 15898813
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fine-tuning the synthesis of ZnO nanostructures by an alcohol thermal process.
    Cheng JP; Zhang XB; Tao XY; Lu HM; Luo ZQ; Liu F
    J Phys Chem B; 2006 Jun; 110(21):10348-53. PubMed ID: 16722738
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.