These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 1467812)

  • 1. Activity-dependent development of spinal cord motor neurons.
    Kalb RG; Hockfield S
    Brain Res Brain Res Rev; 1992; 17(3):283-9. PubMed ID: 1467812
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrical activity in the neuromuscular unit can influence the molecular development of motor neurons.
    Kalb RG; Hockfield S
    Dev Biol; 1994 Apr; 162(2):539-48. PubMed ID: 8150212
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Induction of a neuronal proteoglycan by the NMDA receptor in the developing spinal cord.
    Kalb RG; Hockfield S
    Science; 1990 Oct; 250(4978):294-6. PubMed ID: 2145629
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of motor neuron dendrite growth by NMDA receptor activation.
    Kalb RG
    Development; 1994 Nov; 120(11):3063-71. PubMed ID: 7720552
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Developmental regulation of N-methyl-D-aspartate- and kainate-type glutamate receptor expression in the rat spinal cord.
    Stegenga SL; Kalb RG
    Neuroscience; 2001; 105(2):499-507. PubMed ID: 11672615
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative and qualitative changes in AMPA receptor expression during spinal cord development.
    Jakowec MW; Fox AJ; Martin LJ; Kalb RG
    Neuroscience; 1995 Aug; 67(4):893-907. PubMed ID: 7675212
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In situ hybridization analysis of AMPA receptor subunit gene expression in the developing rat spinal cord.
    Jakowec MW; Yen L; Kalb RG
    Neuroscience; 1995 Aug; 67(4):909-20. PubMed ID: 7675213
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Large diameter primary afferent input is required for expression of the Cat-301 proteoglycan on the surface of motor neurons.
    Kalb RG; Hockfield S
    Neuroscience; 1990; 34(2):391-401. PubMed ID: 2333149
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular evidence for nitric oxide-mediated motor neuron development.
    Kalb RG; Agostini J
    Neuroscience; 1993 Nov; 57(1):1-8. PubMed ID: 7506398
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular evidence for early activity-dependent development of hamster motor neurons.
    Kalb RG; Hockfield S
    J Neurosci; 1988 Jul; 8(7):2350-60. PubMed ID: 3249230
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of L-type calcium channels and a nifedipine-sensitive motor activity in the postnatal mouse spinal cord.
    Jiang Z; Rempel J; Li J; Sawchuk MA; Carlin KP; Brownstone RM
    Eur J Neurosci; 1999 Oct; 11(10):3481-7. PubMed ID: 10564356
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of GluR1 in activity-dependent motor system development.
    Zhang L; Schessl J; Werner M; Bonnemann C; Xiong G; Mojsilovic-Petrovic J; Zhou W; Cohen A; Seeburg P; Misawa H; Jayaram A; Personius K; Hollmann M; Sprengel R; Kalb R
    J Neurosci; 2008 Oct; 28(40):9953-68. PubMed ID: 18829953
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Distinct and developmentally regulated activity-dependent plasticity at descending glutamatergic synapses on flexor and extensor motoneurons.
    Lenschow C; Cazalets JR; Bertrand SS
    Sci Rep; 2016 Jun; 6():28522. PubMed ID: 27329279
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Specification of synaptic connections between sensory and motor neurons in the developing spinal cord.
    Frank E; Mendelson B
    J Neurobiol; 1990 Jan; 21(1):33-50. PubMed ID: 2181066
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Developmental alterations in NMDA receptor-mediated [Ca2+]i elevation in substantia gelatinosa neurons of neonatal rat spinal cord.
    Hori Y; Kanda K
    Brain Res Dev Brain Res; 1994 Jul; 80(1-2):141-8. PubMed ID: 7525112
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Involvement of N-methyl-D-aspartate receptors in nociception and motor control in the spinal cord of the mouse: behavioral, pharmacological and electrophysiological evidence.
    Raigorodsky G; Urca G
    Neuroscience; 1990; 36(3):601-10. PubMed ID: 1978259
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Early ontogeny of the vagus nerve: an analysis of the medulla oblongata and cervical spinal cord of the postnatal rat.
    Kalia M
    Neurochem Int; 1992 Jan; 20(1):119-28. PubMed ID: 1284677
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The postnatal reorganization of primary afferent input and dorsal horn cell receptive fields in the rat spinal cord is an activity-dependent process.
    Beggs S; Torsney C; Drew LJ; Fitzgerald M
    Eur J Neurosci; 2002 Oct; 16(7):1249-58. PubMed ID: 12405985
    [TBL] [Abstract][Full Text] [Related]  

  • 19. N-methyl-D-aspartate receptors are transiently expressed in the developing spinal cord ventral horn.
    Kalb RG; Lidow MS; Halsted MJ; Hockfield S
    Proc Natl Acad Sci U S A; 1992 Sep; 89(18):8502-6. PubMed ID: 1356265
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ethanol withdrawal hyper-responsiveness mediated by NMDA receptors in spinal cord motor neurons.
    Li HF; Kendig JJ
    Br J Pharmacol; 2003 May; 139(1):73-80. PubMed ID: 12746225
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.