These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 14678138)

  • 1. Optical mapping of transmural activation induced by electrical shocks in isolated left ventricular wall wedge preparations.
    Sharifov OF; Fast VG
    J Cardiovasc Electrophysiol; 2003 Nov; 14(11):1215-22. PubMed ID: 14678138
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intramural virtual electrodes during defibrillation shocks in left ventricular wall assessed by optical mapping of membrane potential.
    Fast VG; Sharifov OF; Cheek ER; Newton JC; Ideker RE
    Circulation; 2002 Aug; 106(8):1007-14. PubMed ID: 12186808
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of microscopic tissue structure in shock-induced activation assessed by optical mapping in myocyte cultures.
    Cheek ER; Sharifov OF; Fast VG
    J Cardiovasc Electrophysiol; 2005 Sep; 16(9):991-1000. PubMed ID: 16174022
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Diastolic shocking experience: do virtual electrodes exist only during systole?
    Efimov IR; Nikolski V
    J Cardiovasc Electrophysiol; 2003 Nov; 14(11):1223-4. PubMed ID: 14678139
    [No Abstract]   [Full Text] [Related]  

  • 5. Role of intramural virtual electrodes in shock-induced activation of left ventricle: optical measurements from the intact epicardial surface.
    Sharifov OF; Fast VG
    Heart Rhythm; 2006 Sep; 3(9):1063-73. PubMed ID: 16945803
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-resolution optical mapping of intramural virtual electrodes in porcine left ventricular wall.
    Sharifov OF; Ideker RE; Fast VG
    Cardiovasc Res; 2004 Dec; 64(3):448-56. PubMed ID: 15537498
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nonlinear changes of transmembrane potential during electrical shocks: role of membrane electroporation.
    Cheek ER; Fast VG
    Circ Res; 2004 Feb; 94(2):208-14. PubMed ID: 14670844
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of electroporation on optically recorded transmembrane potential responses to high-intensity electrical shocks.
    Nikolski VP; Sambelashvili AT; Krinsky VI; Efimov IR
    Am J Physiol Heart Circ Physiol; 2004 Jan; 286(1):H412-8. PubMed ID: 14527941
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intramural virtual electrodes in ventricular wall: effects on epicardial polarizations.
    Sharifov OF; Fast VG
    Circulation; 2004 May; 109(19):2349-56. PubMed ID: 15117837
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polarity reversal lowers activation time during diastolic field stimulation of the rabbit ventricles: insights into mechanisms.
    Maleckar MM; Woods MC; Sidorov VY; Holcomb MR; Mashburn DN; Wikswo JP; Trayanova NA
    Am J Physiol Heart Circ Physiol; 2008 Oct; 295(4):H1626-33. PubMed ID: 18708441
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Do intramural virtual electrodes facilitate successful defibrillation? Model-based analysis of experimental evidence.
    Hooks DA; Trew ML; Smaill BH; Pullan AJ
    J Cardiovasc Electrophysiol; 2006 Mar; 17(3):305-11. PubMed ID: 16643406
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Responses of the transmembrane potential of myocardial cells during a shock.
    Zhou X; Rollins DL; Smith WM; Ideker RE
    J Cardiovasc Electrophysiol; 1995 Apr; 6(4):252-63. PubMed ID: 7647950
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of an optrode for intramural multisite optical recordings of Vm in the heart.
    Byars JL; Smith WM; Ideker RE; Fast VG
    J Cardiovasc Electrophysiol; 2003 Nov; 14(11):1196-202. PubMed ID: 14678134
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Induction of ventricular fibrillation by T-wave field-shocks in the isolated perfused rabbit heart: role of nonuniform shock responses.
    Kirchhof PF; Fabritz CL; Behrens S; Franz MR
    Basic Res Cardiol; 1997 Feb; 92(1):35-44. PubMed ID: 9062650
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of electrical shocks on Cai2+ and Vm in myocyte cultures.
    Fast VG; Cheek ER; Pollard AE; Ideker RE
    Circ Res; 2004 Jun; 94(12):1589-97. PubMed ID: 15155528
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prolongation and shortening of action potentials by electrical shocks in frog ventricular muscle.
    Knisley SB; Smith WM; Ideker RE
    Am J Physiol; 1994 Jun; 266(6 Pt 2):H2348-58. PubMed ID: 8023996
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optical measurements of intramural action potentials in isolated porcine hearts using optrodes.
    Kong W; Fakhari N; Sharifov OF; Ideker RE; Smith WM; Fast VG
    Heart Rhythm; 2007 Nov; 4(11):1430-6. PubMed ID: 17954403
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Shock-induced epicardial and endocardial virtual electrodes leading to ventricular fibrillation via reentry, graded responses, and transmural activation.
    Evans FG; Gray RA
    J Cardiovasc Electrophysiol; 2004 Jan; 15(1):79-87. PubMed ID: 15028078
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transmembrane voltage changes produced by real and virtual electrodes during monophasic defibrillation shock delivered by an implantable electrode.
    Efimov IR; Cheng YN; Biermann M; Van Wagoner DR; Mazgalev TN; Tchou PJ
    J Cardiovasc Electrophysiol; 1997 Sep; 8(9):1031-45. PubMed ID: 9300301
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct measurements of membrane time constant during defibrillation strength shocks.
    Sharma V; Qu F; Nikolski VP; DeGroot P; Efimov IR
    Heart Rhythm; 2007 Apr; 4(4):478-86. PubMed ID: 17399638
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.