BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 14678249)

  • 1. Novel isoforms of NADPH oxidase in vascular physiology and pathophysiology.
    Bengtsson SH; Gulluyan LM; Dusting GJ; Drummond GR
    Clin Exp Pharmacol Physiol; 2003 Nov; 30(11):849-54. PubMed ID: 14678249
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Suppression of oxidative stress in the endothelium and vascular wall.
    Jiang F; Drummond GR; Dusting GJ
    Endothelium; 2004; 11(2):79-88. PubMed ID: 15370067
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gp91phox contributes to NADPH oxidase activity in aortic fibroblasts but not smooth muscle cells.
    Chamseddine AH; Miller FJ
    Am J Physiol Heart Circ Physiol; 2003 Dec; 285(6):H2284-9. PubMed ID: 12855428
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Expression of a functionally active gp91phox-containing neutrophil-type NAD(P)H oxidase in smooth muscle cells from human resistance arteries: regulation by angiotensin II.
    Touyz RM; Chen X; Tabet F; Yao G; He G; Quinn MT; Pagano PJ; Schiffrin EL
    Circ Res; 2002 Jun; 90(11):1205-13. PubMed ID: 12065324
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Nox family of NADPH oxidases: friend or foe of the vascular system?
    Takac I; Schröder K; Brandes RP
    Curr Hypertens Rep; 2012 Feb; 14(1):70-8. PubMed ID: 22071588
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanisms for suppressing NADPH oxidase in the vascular wall.
    Dusting GJ; Selemidis S; Jiang F
    Mem Inst Oswaldo Cruz; 2005 Mar; 100 Suppl 1():97-103. PubMed ID: 15962105
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A gp91phox containing NADPH oxidase selectively expressed in endothelial cells is a major source of oxygen radical generation in the arterial wall.
    Görlach A; Brandes RP; Nguyen K; Amidi M; Dehghani F; Busse R
    Circ Res; 2000 Jul; 87(1):26-32. PubMed ID: 10884368
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reactive oxygen species derived from NADPH oxidase 1 and mitochondria mediate angiotensin II-induced smooth muscle cell senescence.
    Tsai IC; Pan ZC; Cheng HP; Liu CH; Lin BT; Jiang MJ
    J Mol Cell Cardiol; 2016 Sep; 98():18-27. PubMed ID: 27381955
    [TBL] [Abstract][Full Text] [Related]  

  • 9. NADPH oxidases in vascular pathology.
    Konior A; Schramm A; Czesnikiewicz-Guzik M; Guzik TJ
    Antioxid Redox Signal; 2014 Jun; 20(17):2794-814. PubMed ID: 24180474
    [TBL] [Abstract][Full Text] [Related]  

  • 10. NADPH oxidase-dependent signaling in endothelial cells: role in physiology and pathophysiology.
    Frey RS; Ushio-Fukai M; Malik AB
    Antioxid Redox Signal; 2009 Apr; 11(4):791-810. PubMed ID: 18783313
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Superoxide production and expression of nox family proteins in human atherosclerosis.
    Sorescu D; Weiss D; Lassègue B; Clempus RE; Szöcs K; Sorescu GP; Valppu L; Quinn MT; Lambeth JD; Vega JD; Taylor WR; Griendling KK
    Circulation; 2002 Mar; 105(12):1429-35. PubMed ID: 11914250
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Combating oxidative stress in vascular disease: NADPH oxidases as therapeutic targets.
    Drummond GR; Selemidis S; Griendling KK; Sobey CG
    Nat Rev Drug Discov; 2011 Jun; 10(6):453-71. PubMed ID: 21629295
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel isoforms of NADPH-oxidase in cerebral vascular control.
    Miller AA; Drummond GR; Sobey CG
    Pharmacol Ther; 2006 Sep; 111(3):928-48. PubMed ID: 16616784
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nox isoforms in vascular pathophysiology: insights from transgenic and knockout mouse models.
    Rivera J; Sobey CG; Walduck AK; Drummond GR
    Redox Rep; 2010; 15(2):50-63. PubMed ID: 20500986
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The contribution of Nox4 to NADPH oxidase activity in mouse vascular smooth muscle.
    Ellmark SH; Dusting GJ; Fui MN; Guzzo-Pernell N; Drummond GR
    Cardiovasc Res; 2005 Feb; 65(2):495-504. PubMed ID: 15639489
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vascular NAD(P)H oxidases: specific features, expression, and regulation.
    Lassègue B; Clempus RE
    Am J Physiol Regul Integr Comp Physiol; 2003 Aug; 285(2):R277-97. PubMed ID: 12855411
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Upregulation of the vascular NAD(P)H-oxidase isoforms Nox1 and Nox4 by the renin-angiotensin system in vitro and in vivo.
    Wingler K; Wünsch S; Kreutz R; Rothermund L; Paul M; Schmidt HH
    Free Radic Biol Med; 2001 Dec; 31(11):1456-64. PubMed ID: 11728818
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Endothelial NADPH oxidases: which NOX to target in vascular disease?
    Drummond GR; Sobey CG
    Trends Endocrinol Metab; 2014 Sep; 25(9):452-63. PubMed ID: 25066192
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Homologs of gp91phox: cloning and tissue expression of Nox3, Nox4, and Nox5.
    Cheng G; Cao Z; Xu X; van Meir EG; Lambeth JD
    Gene; 2001 May; 269(1-2):131-40. PubMed ID: 11376945
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vascular Biology of Superoxide-Generating NADPH Oxidase 5-Implications in Hypertension and Cardiovascular Disease.
    Touyz RM; Anagnostopoulou A; Camargo LL; Rios FJ; Montezano AC
    Antioxid Redox Signal; 2019 Mar; 30(7):1027-1040. PubMed ID: 30334629
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.