BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

504 related articles for article (PubMed ID: 1467829)

  • 21. Modulation of rabbit aortic Ca(2+)-activated K+ channels by pinacidil, cromakalim, and glibenclamide.
    Gelband GH; McCullough JR
    Am J Physiol; 1993 May; 264(5 Pt 1):C1119-27. PubMed ID: 8498475
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Hypoxia-induced catecholamine release and intracellular Ca2+ increase via suppression of K+ channels in cultured rat adrenal chromaffin cells.
    Mochizuki-Oda N; Takeuchi Y; Matsumura K; Oosawa Y; Watanabe Y
    J Neurochem; 1997 Jul; 69(1):377-87. PubMed ID: 9202332
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Calcium-activated potassium channels in native endothelial cells from rabbit aorta: conductance, Ca2+ sensitivity and block.
    Rusko J; Tanzi F; van Breemen C; Adams DJ
    J Physiol; 1992 Sep; 455():601-21. PubMed ID: 1484364
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Glucose-receptive neurones in the rat ventromedial hypothalamus express KATP channels composed of Kir6.1 and SUR1 subunits.
    Lee K; Dixon AK; Richardson PJ; Pinnock RD
    J Physiol; 1999 Mar; 515 ( Pt 2)(Pt 2):439-52. PubMed ID: 10050011
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comparison of the effects of several potassium-channel openers on rat bladder and rat portal vein in vitro.
    Edwards G; Henshaw M; Miller M; Weston AH
    Br J Pharmacol; 1991 Mar; 102(3):679-86. PubMed ID: 1364839
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Hypoxia activates ATP-dependent potassium channels in inspiratory neurones of neonatal mice.
    Mironov SL; Langohr K; Haller M; Richter DW
    J Physiol; 1998 Jun; 509 ( Pt 3)(Pt 3):755-66. PubMed ID: 9596797
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Comparison of the effects of putative activators of K+ channels on pancreatic B-cell function.
    Plant TD; Garrino MG; Henquin JC
    Pflugers Arch; 1989; 414 Suppl 1():S152-3. PubMed ID: 2528721
    [No Abstract]   [Full Text] [Related]  

  • 28. Activation by intracellular GDP, metabolic inhibition and pinacidil of a glibenclamide-sensitive K-channel in smooth muscle cells of rat mesenteric artery.
    Zhang H; Bolton TB
    Br J Pharmacol; 1995 Feb; 114(3):662-72. PubMed ID: 7735693
    [TBL] [Abstract][Full Text] [Related]  

  • 29. 4-morpholinecarboximidine-N-1-adamantyl-N'-cyclohexylhydrochloride (U-37883A): pharmacological characterization of a novel antagonist of vascular ATP-sensitive K+ channel openers.
    Meisheri KD; Humphrey SJ; Khan SA; Cipkus-Dubray LA; Smith MP; Jones AW
    J Pharmacol Exp Ther; 1993 Aug; 266(2):655-65. PubMed ID: 8355199
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of cromakalim, pinacidil and glibenclamide on cholinergic transmission in rat isolated atria.
    Fabiani ME; Story DF
    Pharmacol Res; 1995 Sep; 32(3):155-63. PubMed ID: 8745346
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Glyburide-sensitive K+ channels in cultured rat hippocampal neurons: activation by cromakalim and energy-depleting conditions.
    Politi DM; Rogawski MA
    Mol Pharmacol; 1991 Aug; 40(2):308-15. PubMed ID: 1715018
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Comparative study of the effects of cromakalim (BRL 34915) and diazoxide on membrane potential, [Ca2+]i and ATP-sensitive potassium currents in insulin-secreting cells.
    Dunne MJ; Yule DI; Gallacher DV; Petersen OH
    J Membr Biol; 1990 Mar; 114(1):53-60. PubMed ID: 2181144
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Differential effects of diazoxide, cromakalim and pinacidil on adrenergic neurotransmission and 86Rb+ efflux in rat brain cortical slices.
    Takata Y; Shimada F; Kato H
    J Pharmacol Exp Ther; 1992 Dec; 263(3):1293-301. PubMed ID: 1469635
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Modulation of intracellular calcium by potassium channel openers in vascular muscle.
    Erne P; Hermsmeyer K
    Naunyn Schmiedebergs Arch Pharmacol; 1991 Dec; 344(6):706-15. PubMed ID: 1775202
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Activation by cromakalim of pre- and post-synaptic ATP-sensitive K+ channels in substantia nigra.
    Häusser MA; de Weille JR; Lazdunski M
    Biochem Biophys Res Commun; 1991 Jan; 174(2):909-14. PubMed ID: 1899575
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Pharmacology and structure-activity relationships for KATP modulators: tissue-selective KATP openers.
    Atwal KS
    J Cardiovasc Pharmacol; 1994; 24 Suppl 4():S12-7. PubMed ID: 7898103
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The resistance of some rat cerebral arteries to the vasorelaxant effect of cromakalim and other K+ channel openers.
    McPherson GA; Stork AP
    Br J Pharmacol; 1992 Jan; 105(1):51-8. PubMed ID: 1534504
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dual effects of diazoxide on ATP-K+ currents recorded from an insulin-secreting cell line.
    Kozlowski RZ; Hales CN; Ashford ML
    Br J Pharmacol; 1989 Aug; 97(4):1039-50. PubMed ID: 2676059
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Hyperpolarizing vasodilators activate ATP-sensitive K+ channels in arterial smooth muscle.
    Standen NB; Quayle JM; Davies NW; Brayden JE; Huang Y; Nelson MT
    Science; 1989 Jul; 245(4914):177-80. PubMed ID: 2501869
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Essential role of nucleotide diphosphates in nicorandil-mediated activation of cardiac ATP-sensitive K+ channel. A comparison with pinacidil and lemakalim.
    Shen WK; Tung RT; Machulda MM; Kurachi Y
    Circ Res; 1991 Oct; 69(4):1152-8. PubMed ID: 1834361
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 26.