These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 14678333)

  • 21. A metalloprotease secreted by the insect pathogen Photorhabdus luminescens induces melanization.
    Held KG; LaRock CN; D'Argenio DA; Berg CA; Collins CM
    Appl Environ Microbiol; 2007 Dec; 73(23):7622-8. PubMed ID: 17933944
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Microbial infection causes the appearance of hemocytes with extreme spreading ability in monolayers of the tobacco hornworm Manduca sexta.
    Dean P; Richards EH; Edwards JP; Reynolds SE; Charnley K
    Dev Comp Immunol; 2004 Jun; 28(7-8):689-700. PubMed ID: 15043939
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Measuring virulence factor expression by the pathogenic bacterium Photorhabdus luminescens in culture and during insect infection.
    Daborn PJ; Waterfield N; Blight MA; Ffrench-Constant RH
    J Bacteriol; 2001 Oct; 183(20):5834-9. PubMed ID: 11566980
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Photorhabdus virulence cassettes confer injectable insecticidal activity against the wax moth.
    Yang G; Dowling AJ; Gerike U; ffrench-Constant RH; Waterfield NR
    J Bacteriol; 2006 Mar; 188(6):2254-61. PubMed ID: 16513755
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Bacterial feeding nematodes ingest haemocytes in the haemocoel of the insect
    Ono M; Hayakawa Y; Yoshiga T
    Parasitology; 2020 Mar; 147(3):279-286. PubMed ID: 31735173
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Modes of phagocytosis of Gram-positive and Gram-negative bacteria by Spodoptera littoralis granular haemocytes.
    Costa SC; Ribeiro C; Girard PA; Zumbihl R; Brehélin M
    J Insect Physiol; 2005 Jan; 51(1):39-46. PubMed ID: 15686644
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The exbD gene of Photorhabdus temperata is required for full virulence in insects and symbiosis with the nematode Heterorhabditis.
    Watson RJ; Joyce SA; Spencer GV; Clarke DJ
    Mol Microbiol; 2005 May; 56(3):763-73. PubMed ID: 15819630
    [TBL] [Abstract][Full Text] [Related]  

  • 28. TM9SF4 is required for Drosophila cellular immunity via cell adhesion and phagocytosis.
    Bergeret E; Perrin J; Williams M; Grunwald D; Engel E; Thevenon D; Taillebourg E; Bruckert F; Cosson P; Fauvarque MO
    J Cell Sci; 2008 Oct; 121(Pt 20):3325-34. PubMed ID: 18796536
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Pre-exposure to non-pathogenic bacteria does not protect Drosophila against the entomopathogenic bacterium Photorhabdus.
    Patrnogic J; Castillo JC; Shokal U; Yadav S; Kenney E; Heryanto C; Ozakman Y; Eleftherianos I
    PLoS One; 2018; 13(10):e0205256. PubMed ID: 30379824
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The lipopolysaccharide (LPS) of Photorhabdus luminescens TT01 can elicit dose- and time-dependent immune priming in Galleria mellonella larvae.
    Wu G; Yi Y; Lv Y; Li M; Wang J; Qiu L
    J Invertebr Pathol; 2015 May; 127():63-72. PubMed ID: 25796336
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Pdl1 is a putative lipase that enhances Photorhabdus toxin complex secretion.
    Yang G; Hernández-Rodríguez CS; Beeton ML; Wilkinson P; Ffrench-Constant RH; Waterfield NR
    PLoS Pathog; 2012; 8(5):e1002692. PubMed ID: 22615559
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Disruption of haemocyte function by exposure to cytochalasin b or nocodazole increases the susceptibility of Galleria mellonella larvae to infection.
    Banville N; Fallon J; McLoughlin K; Kavanagh K
    Microbes Infect; 2011 Dec; 13(14-15):1191-8. PubMed ID: 21782965
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Direct infection of Spodoptera litura by Photorhabdus luminescens encapsulated in alginate beads.
    Rajagopal R; Mohan S; Bhatnagar RK
    J Invertebr Pathol; 2006 Sep; 93(1):50-3. PubMed ID: 16828112
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The distinct function of Tep2 and Tep6 in the immune defense of Drosophila melanogaster against the pathogen Photorhabdus.
    Shokal U; Kopydlowski H; Eleftherianos I
    Virulence; 2017 Nov; 8(8):1668-1682. PubMed ID: 28498729
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The Drosophila Thioester containing Protein-4 participates in the induction of the cellular immune response to the pathogen Photorhabdus.
    Shokal U; Eleftherianos I
    Dev Comp Immunol; 2017 Nov; 76():200-208. PubMed ID: 28642050
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Oral toxicity of Photorhabdus luminescens W14 toxin complexes in Escherichia coli.
    Waterfield N; Dowling A; Sharma S; Daborn PJ; Potter U; Ffrench-Constant RH
    Appl Environ Microbiol; 2001 Nov; 67(11):5017-24. PubMed ID: 11679320
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Eater and draper are involved in the periostial haemocyte immune response in the mosquito Anopheles gambiae.
    Sigle LT; Hillyer JF
    Insect Mol Biol; 2018 Aug; 27(4):429-438. PubMed ID: 29520896
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Phagocytic activity and encapsulation rate of Galleria mellonella larval haemocytes during bacterial infection by Bacillus thuringiensis.
    Dubovskiy IM; Krukova NA; Glupov VV
    J Invertebr Pathol; 2008 Jul; 98(3):360-2. PubMed ID: 18440019
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The lumicins: novel bacteriocins from Photorhabdus luminescens with similarity to the uropathogenic-specific protein (USP) from uropathogenic Escherichia coli.
    Sharma S; Waterfield N; Bowen D; Rocheleau T; Holland L; James R; ffrench-Constant R
    FEMS Microbiol Lett; 2002 Sep; 214(2):241-9. PubMed ID: 12351238
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The extended loop of the C-terminal carbohydrate-recognition domain of Manduca sexta immulectin-2 is important for ligand binding and functions.
    Shi XZ; Yu XQ
    Amino Acids; 2012 Jun; 42(6):2383-91. PubMed ID: 21805136
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.