BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 14679)

  • 1. Selective chemical modification of Escherichia coli elongation factor G: butanedione modification of an arginine essential for nucleotide binding.
    Rohrbach MS; Bodley JW
    Biochemistry; 1977 Apr; 16(7):1360-3. PubMed ID: 14679
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selective chemical modification of Escherichia coli elongation factor G. N-Ethylmaleimide modification of a cysteine essential for nucleotide binding.
    Rohrbach MS; Bodley JW
    J Biol Chem; 1976 Feb; 251(4):930-3. PubMed ID: 765342
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Steady state kinetic analysis of the mechanism of guanosine triphosphate hydrolysis catalyzed by Escherichia coli elongation factor G and the ribosome.
    Rohrback MS; Bodley JW
    Biochemistry; 1976 Oct; 15(21):4565-9. PubMed ID: 9976
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inactivation of Escherichia coli elongation factor Tu by the arginine-specific reagent butanedione.
    Marschel AH; Bodley JW
    Arch Biochem Biophys; 1980 Sep; 203(2):489-95. PubMed ID: 7006511
    [No Abstract]   [Full Text] [Related]  

  • 5. Inactivation of Escherichia coli elongation factor Ts by the arginine-specific reagent butanedione.
    MarSchel AH; Bodley JW
    J Biol Chem; 1979 Mar; 254(6):1816-20. PubMed ID: 33984
    [No Abstract]   [Full Text] [Related]  

  • 6. A form of elongation factor G insensitive to N-ethyl-maleimide.
    Girbes T; Vazquez D; Modolell J
    Mol Biol Rep; 1976 Apr; 2(5):401-6. PubMed ID: 775317
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The inhibition of ribosomal translocation by viomycin.
    Modolell J; Vázquez
    Eur J Biochem; 1977 Dec; 81(3):491-7. PubMed ID: 202460
    [No Abstract]   [Full Text] [Related]  

  • 8. Structure-function relationships in Escherichia coli translational elongation factor G: modification of lysine residues by the site-specific reagent pyridoxal phosphate.
    Giovane A; Balestrieri C; Gualerzi C
    Biochemistry; 1982 Oct; 21(21):5224-30. PubMed ID: 6816267
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrolysis of GTP by elongation factor G drives tRNA movement on the ribosome.
    Rodnina MV; Savelsbergh A; Katunin VI; Wintermeyer W
    Nature; 1997 Jan; 385(6611):37-41. PubMed ID: 8985244
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pulvomycin, an inhibitor of protein biosynthesis preventing ternary complex formation between elongation factor Tu, GTP, and aminoacyl-tRNA.
    Wolf H; Assmann D; Fischer E
    Proc Natl Acad Sci U S A; 1978 Nov; 75(11):5324-8. PubMed ID: 364475
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inactivation of Escherichia coli L-threonine dehydrogenase by 2,3-butanedione. Evidence for a catalytically essential arginine residue.
    Epperly BR; Dekker EE
    J Biol Chem; 1989 Nov; 264(31):18296-301. PubMed ID: 2681195
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modification of an arginine residue essential for the activity of NAD-malic enzyme from Ascaris suum.
    Rao GS; Kong CT; Benjamin RC; Harris BG; Cook PF
    Arch Biochem Biophys; 1987 May; 255(1):8-13. PubMed ID: 3592670
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kirromycin, an inhibitor of protein biosynthesis that acts on elongation factor Tu.
    Wolf H; Chinali G; Parmeggiani A
    Proc Natl Acad Sci U S A; 1974 Dec; 71(12):4910-4. PubMed ID: 4373734
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stabilization by the 30S ribosomal subunit of the interaction of 50S subunits with elongation factor G and guanine nucleotide.
    Marsh RC; Parmeggiani A
    Biochemistry; 1977 Apr; 16(7):1278-83. PubMed ID: 321016
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inactivation of L-lactate monooxygenase with 2,3-butanedione and phenylglyoxal.
    Peters RG; Jones WC; Cromartie TH
    Biochemistry; 1981 Apr; 20(9):2564-71. PubMed ID: 7236621
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhibition of E. coli L-Asparaginase by reaction with 2,3-butanedione. Chemical modification of arginine and histidine residues.
    Petz D; Löffler HG; Schneider F
    Z Naturforsch C Biosci; 1979; 34(9-10):742-6. PubMed ID: 160698
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Stoichiometry of GTP breakdown during peptide synthesis on the ribosome. Stoichiometry of GTP hydrolysis during elongation of polyphenylalanine on polyuridylic acid].
    Kakhniashvili DG; Smailov SK; Gogiia IN; Gavrilova LP
    Biokhimiia; 1983 Jun; 48(6):959-69. PubMed ID: 6349702
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Activities of guanosine triphosphate analogues in reactions catalyzed by elongation factor Tu and initiation factor 2 of Escherichia coli.
    Hamel E
    Biochim Biophys Acta; 1975 Dec; 414(3):326-40. PubMed ID: 1106767
    [TBL] [Abstract][Full Text] [Related]  

  • 19. D-Serine dehydratase from Escherichia coli. Essential arginine residue at the pyridoxal 5'-phosphate binding site.
    Kazarinoff MN; Snell EE
    J Biol Chem; 1976 Oct; 251(20):6179-82. PubMed ID: 789365
    [TBL] [Abstract][Full Text] [Related]  

  • 20. New evidence for the essential role of arginine residues in anion transport across the red blood cell membrane.
    Julien T; Zaki L
    Biochim Biophys Acta; 1987 Jun; 900(2):169-74. PubMed ID: 3593712
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.