These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 14679229)

  • 1. NpdR, a repressor involved in 2,4,6-trinitrophenol degradation in Rhodococcus opacus HL PM-1.
    Nga DP; Altenbuchner J; Heiss GS
    J Bacteriol; 2004 Jan; 186(1):98-103. PubMed ID: 14679229
    [TBL] [Abstract][Full Text] [Related]  

  • 2. npd gene functions of Rhodococcus (opacus) erythropolis HL PM-1 in the initial steps of 2,4,6-trinitrophenol degradation.
    Heiss G; Hofmann KW; Trachtmann N; Walters DM; Rouvière P; Knackmuss HJ
    Microbiology (Reading); 2002 Mar; 148(Pt 3):799-806. PubMed ID: 11882715
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nitrite elimination and hydrolytic ring cleavage in 2,4,6-trinitrophenol (picric acid) degradation.
    Hofmann KW; Knackmuss HJ; Heiss G
    Appl Environ Microbiol; 2004 May; 70(5):2854-60. PubMed ID: 15128543
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Homologous npdGI genes in 2,4-dinitrophenol- and 4-nitrophenol-degrading Rhodococcus spp.
    Heiss G; Trachtmann N; Abe Y; Takeo M; Knackmuss HJ
    Appl Environ Microbiol; 2003 May; 69(5):2748-54. PubMed ID: 12732545
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Initial hydrogenation during catabolism of picric acid by Rhodococcus erythropolis HL 24-2.
    Lenke H; Knackmuss HJ
    Appl Environ Microbiol; 1992 Sep; 58(9):2933-7. PubMed ID: 1444408
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydride-Meisenheimer complex formation and protonation as key reactions of 2,4,6-trinitrophenol biodegradation by Rhodococcus erythropolis.
    Rieger PG; Sinnwell V; Preuss A; Francke W; Knackmuss HJ
    J Bacteriol; 1999 Feb; 181(4):1189-95. PubMed ID: 9973345
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biodegradation of 2,4,6-trinitrophenol by Rhodococcus sp. isolated from a picric acid-contaminated soil.
    Shen J; Zhang J; Zuo Y; Wang L; Sun X; Li J; Han W; He R
    J Hazard Mater; 2009 Apr; 163(2-3):1199-206. PubMed ID: 18762376
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The putative regulator of catechol catabolism in Rhodococcus opacus 1CP--an IclR-type, not a LysR-type transcriptional regulator.
    Eulberg D; Schlömann M
    Antonie Van Leeuwenhoek; 1998; 74(1-3):71-82. PubMed ID: 10068790
    [TBL] [Abstract][Full Text] [Related]  

  • 9. NarL, a Novel Repressor for CYP108j1 Expression during PAHs Degradation in
    Kan J; Peng T; Huang T; Xiong G; Hu Z
    Int J Mol Sci; 2020 Feb; 21(3):. PubMed ID: 32024188
    [No Abstract]   [Full Text] [Related]  

  • 10. High-density sampling of a bacterial operon using mRNA differential display.
    Walters DM; Russ R; Knackmuss HJ; Rouvière PE
    Gene; 2001 Aug; 273(2):305-15. PubMed ID: 11595177
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of catRABC operon for catechol degradation from phenol-degrading Rhodococcus erythropolis.
    Veselý M; Knoppová M; Nesvera J; Pátek M
    Appl Microbiol Biotechnol; 2007 Aug; 76(1):159-68. PubMed ID: 17483937
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of PTS gene expression by the homologous transcriptional regulators, Mlc and NagC, in Escherichia coli (or how two similar repressors can behave differently).
    Plumbridge J
    J Mol Microbiol Biotechnol; 2001 Jul; 3(3):371-80. PubMed ID: 11361067
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A new modified ortho cleavage pathway of 3-chlorocatechol degradation by Rhodococcus opacus 1CP: genetic and biochemical evidence.
    Moiseeva OV; Solyanikova IP; Kaschabek SR; Gröning J; Thiel M; Golovleva LA; Schlömann M
    J Bacteriol; 2002 Oct; 184(19):5282-92. PubMed ID: 12218013
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genome and transcriptome sequencing of a newly isolated 2,4-dinitrophenol-degrading strain Rhodococcus imtechensis XM24D.
    Hu F; Yang L; Wang Z; Wang J
    Genes Genomics; 2021 Jul; 43(7):829-835. PubMed ID: 33932219
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of transcriptional regulatory genes for biphenyl degradation in Rhodococcus sp. strain RHA1.
    Takeda H; Yamada A; Miyauchi K; Masai E; Fukuda M
    J Bacteriol; 2004 Apr; 186(7):2134-46. PubMed ID: 15028699
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of two-component regulatory genes involved in o-xylene degradation by Rhodococcus sp. strain DK17.
    Kim D; Chae JC; Zylstra GJ; Sohn HY; Kwon GS; Kim E
    J Microbiol; 2005 Feb; 43(1):49-53. PubMed ID: 15765058
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Function of coenzyme F420 in aerobic catabolism of 2,4, 6-trinitrophenol and 2,4-dinitrophenol by Nocardioides simplex FJ2-1A.
    Ebert S; Rieger PG; Knackmuss HJ
    J Bacteriol; 1999 May; 181(9):2669-74. PubMed ID: 10217752
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A 3-(3-hydroxyphenyl)propionic acid catabolic pathway in Rhodococcus globerulus PWD1: cloning and characterization of the hpp operon.
    Barnes MR; Duetz WA; Williams PA
    J Bacteriol; 1997 Oct; 179(19):6145-53. PubMed ID: 9324265
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genome and Phenotype Microarray Analyses of Rhodococcus sp. BCP1 and Rhodococcus opacus R7: Genetic Determinants and Metabolic Abilities with Environmental Relevance.
    Orro A; Cappelletti M; D'Ursi P; Milanesi L; Di Canito A; Zampolli J; Collina E; Decorosi F; Viti C; Fedi S; Presentato A; Zannoni D; Di Gennaro P
    PLoS One; 2015; 10(10):e0139467. PubMed ID: 26426997
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Converging catabolism of 2,4,6-trinitrophenol (picric acid) and 2,4-dinitrophenol by Nocardioides simplex FJ2-1A.
    Ebert S; Fischer P; Knackmuss HJ
    Biodegradation; 2001; 12(5):367-76. PubMed ID: 11995829
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.