These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 14679545)

  • 1. Development of a high-throughput screen for protein catalysts: application to the directed evolution of antibody aldolases.
    Gildersleeve J; Varvak A; Atwell S; Evans D; Schultz PG
    Angew Chem Int Ed Engl; 2003 Dec; 42(48):5971-3. PubMed ID: 14679545
    [No Abstract]   [Full Text] [Related]  

  • 2. A high-throughput screening assay for hydroxynitrile lyase activity.
    Andexer J; Guterl JK; Pohl M; Eggert T
    Chem Commun (Camb); 2006 Oct; (40):4201-3. PubMed ID: 17031431
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Completing the circle.
    Schultz PG; Lerner RA
    Nature; 2002 Aug; 418(6897):485. PubMed ID: 12152057
    [No Abstract]   [Full Text] [Related]  

  • 4. A novel screening assay for hydroxynitrile lyases suitable for high-throughput screening.
    Krammer B; Rumbold K; Tschemmernegg M; Pöchlauer P; Schwab H
    J Biotechnol; 2007 Mar; 129(1):151-61. PubMed ID: 17157404
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Directed evolution governed by controlling the molecular recognition between an abzyme and its haptenic transition-state analog.
    Takahashi-Ando N; Kakinuma H; Fujii I; Nishi Y
    J Immunol Methods; 2004 Nov; 294(1-2):1-14. PubMed ID: 15604011
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Directed evolution of aldolases for exploitation in synthetic organic chemistry.
    Bolt A; Berry A; Nelson A
    Arch Biochem Biophys; 2008 Jun; 474(2):318-30. PubMed ID: 18230325
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Directed evolution of an industrial biocatalyst: 2-deoxy-D-ribose 5-phosphate aldolase.
    Jennewein S; Schürmann M; Wolberg M; Hilker I; Luiten R; Wubbolts M; Mink D
    Biotechnol J; 2006 May; 1(5):537-48. PubMed ID: 16892289
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vitro abzyme evolution to optimize antibody recognition for catalysis.
    Takahashi N; Kakinuma H; Liu L; Nishi Y; Fujii I
    Nat Biotechnol; 2001 Jun; 19(6):563-7. PubMed ID: 11385462
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of protein, peptide, and small molecule catalysts using catalysis-based selection strategies.
    Tanaka F
    Chem Rec; 2005; 5(5):276-85. PubMed ID: 16211623
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A bacterial selection for the directed evolution of pyruvate aldolases.
    Griffiths JS; Cheriyan M; Corbell JB; Pocivavsek L; Fierke CA; Toone EJ
    Bioorg Med Chem; 2004 Aug; 12(15):4067-74. PubMed ID: 15246084
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Expression improvement and mechanistic study of the retro-Diels-Alderase catalytic antibody 10F11 by site-directed mutagenesis.
    Zheng L; Goddard JP; Baumann U; Reymond JL
    J Mol Biol; 2004 Aug; 341(3):807-14. PubMed ID: 15288788
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Catalytic antibodies: hapten design strategies and screening methods.
    Xu Y; Yamamoto N; Janda KD
    Bioorg Med Chem; 2004 Oct; 12(20):5247-68. PubMed ID: 15388154
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Substrate-assisted antibody catalysis.
    Deng S; Bharat N; de Prada P; Landry DW
    Org Biomol Chem; 2004 Feb; 2(3):288-90. PubMed ID: 14747854
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular mechanisms of improvement of hydrolytic antibody 6D9 by site-directed mutagenesis.
    Takahashi-Ando N; Shimazaki K; Kakinuma H; Fujii I; Nishi Y
    J Biochem; 2006 Oct; 140(4):509-15. PubMed ID: 16921165
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modifying the stereochemistry of an enzyme-catalyzed reaction by directed evolution.
    Williams GJ; Domann S; Nelson A; Berry A
    Proc Natl Acad Sci U S A; 2003 Mar; 100(6):3143-8. PubMed ID: 12626743
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Directed evolution of a pyruvate aldolase to recognize a long chain acyl substrate.
    Cheriyan M; Walters MJ; Kang BD; Anzaldi LL; Toone EJ; Fierke CA
    Bioorg Med Chem; 2011 Nov; 19(21):6447-53. PubMed ID: 21944547
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improving GPX activity of selenium-containing human single-chain Fv antibody by site-directed mutation based on the structural analysis.
    Xu J; Song J; Yan F; Chu H; Luo J; Zhao Y; Cheng X; Luo G; Zheng Q; Wei J
    J Mol Recognit; 2009; 22(4):293-300. PubMed ID: 19277948
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A catalysis-based selection for peroxidase antibodies with increased activity.
    Yin J; Mills JH; Schultz PG
    J Am Chem Soc; 2004 Mar; 126(10):3006-7. PubMed ID: 15012103
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mimicking dihydroxy acetone phosphate-utilizing aldolases through organocatalysis: a facile route to carbohydrates and aminosugars.
    Suri JT; Ramachary DB; Barbas CF
    Org Lett; 2005 Mar; 7(7):1383-5. PubMed ID: 15787512
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Binding and catalysis: a thermodynamic study on a catalytic antibody system.
    Wade H; Scanlan TS
    Chembiochem; 2003 Jun; 4(6):537-40. PubMed ID: 12794866
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.