These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
269 related articles for article (PubMed ID: 14679907)
1. [Identification of the key genes of naphthalene catabolism in soil DNA]. Mavrodi DV; Kovalenko NP; Sokolov SL; Parfeniuk VG; Kosheleva IA; Boronin AM Mikrobiologiia; 2003; 72(5):672-80. PubMed ID: 14679907 [TBL] [Abstract][Full Text] [Related]
2. [Analysis of aromatic hydrocarbon catabolic genes in strains isolated from soil in Patagonia]. Vacca GS; Kiesel B; Wünsche L; Pucci OH Rev Argent Microbiol; 2002; 34(3):138-49. PubMed ID: 12415896 [TBL] [Abstract][Full Text] [Related]
3. The abundance of nahAc genes correlates with the 14C-naphthalene mineralization potential in petroleum hydrocarbon-contaminated oxic soil layers. Tuomi PM; Salminen JM; Jørgensen KS FEMS Microbiol Ecol; 2004 Dec; 51(1):99-107. PubMed ID: 16329859 [TBL] [Abstract][Full Text] [Related]
4. Functional gene abundances (nahAc, alkB, xylE) in the assessment of the efficacy of bioremediation. Salminen JM; Tuomi PM; Jørgensen KS Appl Biochem Biotechnol; 2008 Dec; 151(2-3):638-52. PubMed ID: 18592409 [TBL] [Abstract][Full Text] [Related]
5. [Silent genes of the catechol oxidation meta-pathway in naphthalene biodegradation plasmids]. Boronin AM; Kulakova AN; Tsoĭ TV; Kosheleva IA; Kochetkov VV Dokl Akad Nauk SSSR; 1988; 299(1):237-40. PubMed ID: 3378500 [No Abstract] [Full Text] [Related]
6. Effects of the inoculant strain Pseudomonas putida KT2442 (pNF142) and of naphthalene contamination on the soil bacterial community. Gomes NC; Kosheleva IA; Abraham WR; Smalla K FEMS Microbiol Ecol; 2005 Sep; 54(1):21-33. PubMed ID: 16329969 [TBL] [Abstract][Full Text] [Related]
7. Dynamic changes in nahAc gene copy numbers during degradation of naphthalene in PAH-contaminated soils. Park JW; Crowley DE Appl Microbiol Biotechnol; 2006 Oct; 72(6):1322-9. PubMed ID: 16804694 [TBL] [Abstract][Full Text] [Related]
8. [Cloning and expression of Pseudomonas putida gene controlling the catechol-2,3-oxygenase activity in Escherichia coli cells]. Tsoĭ TV; Kosheleva IA; Zamaraev VS; Trelina OV; Selifonov SA Genetika; 1988 Sep; 24(9):1550-61. PubMed ID: 3058550 [TBL] [Abstract][Full Text] [Related]
9. Identification of nah-1 genes of the Pseudomonas putida naphthalene-degrading NPL-41 plasmid operon. Serebriiskaya TS; Lenets AA; Goldenkova IV; Kobets NS; Piruzian ES Mol Gen Mikrobiol Virusol; 1999; (4):33-6. PubMed ID: 10621937 [TBL] [Abstract][Full Text] [Related]
10. Genes similar to naphthalene dioxygenase genes in trifluralin-degrading bacteria. Bellinaso Mde L; Henriques JA; Gaylarde CC; Greer CW Pest Manag Sci; 2004 May; 60(5):474-8. PubMed ID: 15154514 [TBL] [Abstract][Full Text] [Related]
11. Evaluation of carbazole degradation by Pseudomonas rhodesiae strain KK1 isolated from soil contaminated with coal tar. Yoon BJ; Lee DH; Kang YS; Oh DC; Kim SI; Oh KH; Kahng HY J Basic Microbiol; 2002; 42(6):434-43. PubMed ID: 12442306 [TBL] [Abstract][Full Text] [Related]
12. [Diversity of genetic systems responsible for biodegradation of naphthalene in Pseudomonas fluorescens strains]. Izmalkova TIu; Sazonova OI; Sokolov SL; Kosheleva IA; Boronin AM Mikrobiologiia; 2005; 74(1):70-8. PubMed ID: 15835781 [TBL] [Abstract][Full Text] [Related]
13. A survey of indigenous microbial hydrocarbon degradation genes in soils from Antarctica and Brazil. Luz AP; Pellizari VH; Whyte LG; Greer CW Can J Microbiol; 2004 May; 50(5):323-33. PubMed ID: 15213740 [TBL] [Abstract][Full Text] [Related]
14. Occurrence and diversity of naphthalene dioxygenase genes in soil microbial communities from the Maritime Antarctic. Flocco CG; Gomes NC; Mac Cormack W; Smalla K Environ Microbiol; 2009 Mar; 11(3):700-14. PubMed ID: 19278452 [TBL] [Abstract][Full Text] [Related]
15. Development of catechol 2,3-dioxygenase-specific primers for monitoring bioremediation by competitive quantitative PCR. Mesarch MB; Nakatsu CH; Nies L Appl Environ Microbiol; 2000 Feb; 66(2):678-83. PubMed ID: 10653735 [TBL] [Abstract][Full Text] [Related]
16. Pseudomonas, the dominant polycyclic aromatic hydrocarbon-degrading bacteria isolated from Antarctic soils and the role of large plasmids in horizontal gene transfer. Ma Y; Wang L; Shao Z Environ Microbiol; 2006 Mar; 8(3):455-65. PubMed ID: 16478452 [TBL] [Abstract][Full Text] [Related]
17. [Regulation of the synthesis of the key enzymes for naphthalene catabolism in Pseudomonas putida and Pseudomonas fluorescens carrying the biodegradation plasmids NAH, pBS3, pBS2 and NPL-1]. Starovoĭtov II Mikrobiologiia; 1985; 54(5):755-62. PubMed ID: 3937034 [TBL] [Abstract][Full Text] [Related]
18. Isolation and characterization of naphthalene-catabolic genes and plasmids from oil-contaminated soil by using two cultivation-independent approaches. Ono A; Miyazaki R; Sota M; Ohtsubo Y; Nagata Y; Tsuda M Appl Microbiol Biotechnol; 2007 Feb; 74(2):501-10. PubMed ID: 17096121 [TBL] [Abstract][Full Text] [Related]
19. Bench-scale and field-scale evaluation of catechol 2,3-dioxygenase specific primers for monitoring BTX bioremediation. Mesarch MB; Nakatsu CH; Nies L Water Res; 2004 Mar; 38(5):1281-8. PubMed ID: 14975661 [TBL] [Abstract][Full Text] [Related]
20. Assessment of the biodegradation potential of psychrotrophic microorganisms. Whyte LG; Greer CW; Inniss WE Can J Microbiol; 1996 Feb; 42(2):99-106. PubMed ID: 8742353 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]