These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 14680158)

  • 21. Role of interfering optical fields in the trapping and melting of gold nanorods and related clusters.
    Deng HD; Li GC; Dai QF; Ouyang M; Lan S; Gopal AV; Trofimov VA; Lysak TM
    Opt Express; 2012 May; 20(10):10963-70. PubMed ID: 22565719
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Single beam optical trapping integrated in a confocal microscope for biological applications.
    Visscher K; Brakenhoff GJ
    Cytometry; 1991; 12(6):486-91. PubMed ID: 1764973
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Passive all-optical force clamp for high-resolution laser trapping.
    Greenleaf WJ; Woodside MT; Abbondanzieri EA; Block SM
    Phys Rev Lett; 2005 Nov; 95(20):208102. PubMed ID: 16384102
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Simultaneous imaging of multiple focal planes using a two-photon scanning microscope.
    Amir W; Carriles R; Hoover EE; Planchon TA; Durfee CG; Squier JA
    Opt Lett; 2007 Jun; 32(12):1731-3. PubMed ID: 17572762
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Multiplying optical tweezers force using a micro-lever.
    Lin CL; Lee YH; Lin CT; Liu YJ; Hwang JL; Chung TT; Baldeck PL
    Opt Express; 2011 Oct; 19(21):20604-9. PubMed ID: 21997068
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Optomechanical measurement of photon spin angular momentum and optical torque in integrated photonic devices.
    He L; Li H; Li M
    Sci Adv; 2016 Sep; 2(9):e1600485. PubMed ID: 27626072
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Combining optical trapping and single-molecule fluorescence spectroscopy: enhanced photobleaching of fluorophores.
    Dijk MA; Kapitein LC; Mameren Jv; Schmidt CF; Peterman EJ
    J Phys Chem B; 2004 May; 108(20):6479-84. PubMed ID: 18950137
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Entangled-photon coincidence fluorescence imaging.
    Scarcelli G; Yun SH
    Opt Express; 2008 Sep; 16(20):16189-94. PubMed ID: 18825257
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Simultaneous self-phase modulation and two-photon absorption measurement by a spectral homodyne Z-scan method.
    Fischer MC; Liu HC; Piletic IR; Warren WS
    Opt Express; 2008 Mar; 16(6):4192-205. PubMed ID: 18542515
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cluster formation of nanoparticles in an optical trap studied by fluorescence correlation spectroscopy.
    Hosokawa C; Yoshikawa H; Masuhara H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Aug; 72(2 Pt 1):021408. PubMed ID: 16196566
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Van der Waals enhancement of optical atom potentials via resonant coupling to surface polaritons.
    Kerckhoff J; Mabuchi H
    Opt Express; 2009 Aug; 17(17):14744-60. PubMed ID: 19687952
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Upconversion fluorescence and optical power limiting effects based on the two- and three-photon absorption process of a new organic dye BPAS.
    Zhou G; Wang X; Wang D; Shao Z; Jiang M
    Appl Opt; 2002 Feb; 41(6):1120-3. PubMed ID: 11900135
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Two-photon fluorescence endoscopy with a micro-optic scanning head.
    Bird D; Gu M
    Opt Lett; 2003 Sep; 28(17):1552-4. PubMed ID: 12956376
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Under-filling trapping objectives optimizes the use of the available laser power in optical tweezers.
    Mahamdeh M; Campos CP; Schäffer E
    Opt Express; 2011 Jun; 19(12):11759-68. PubMed ID: 21716408
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Epifluorescence collection in two-photon microscopy.
    Beaurepaire E; Mertz J
    Appl Opt; 2002 Sep; 41(25):5376-82. PubMed ID: 12211567
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Optical catapulting of microspheres in mucus models-toward overcoming the mucus biobarrier.
    Bunea AI; Chouliara M; Harloff-Helleberg S; Bañas AR; Engay EL; Glückstad J
    J Biomed Opt; 2019 Mar; 24(3):1-9. PubMed ID: 30825297
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Modifying photoisomerization efficiency by metallic nanostructures.
    Xu S; Shan J; Shi W; Liu L; Xu L
    Opt Express; 2011 Jun; 19(13):12336-41. PubMed ID: 21716470
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Optical trapping microfabrication with electrophoretically delivered particles inside glass capillaries.
    Yao XC; Castro A
    Opt Lett; 2003 Aug; 28(15):1335-7. PubMed ID: 12906081
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Trapping double negative particles in the ray optics regime using optical tweezers with focused beams.
    Ambrosio LA; Hernández-Figueroa HE
    Opt Express; 2009 Nov; 17(24):21918-24. PubMed ID: 19997436
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cell separation by the combination of microfluidics and optical trapping force on a microchip.
    Murata M; Okamoto Y; Park YS; Kaji N; Tokeshi M; Baba Y
    Anal Bioanal Chem; 2009 May; 394(1):277-83. PubMed ID: 19225767
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.