BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 14680476)

  • 21. Genomewide identification of Sko1 target promoters reveals a regulatory network that operates in response to osmotic stress in Saccharomyces cerevisiae.
    Proft M; Gibbons FD; Copeland M; Roth FP; Struhl K
    Eukaryot Cell; 2005 Aug; 4(8):1343-52. PubMed ID: 16087739
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Yeast PKA represses Msn2p/Msn4p-dependent gene expression to regulate growth, stress response and glycogen accumulation.
    Smith A; Ward MP; Garrett S
    EMBO J; 1998 Jul; 17(13):3556-64. PubMed ID: 9649426
    [TBL] [Abstract][Full Text] [Related]  

  • 23. In yeast, loss of Hog1 leads to osmosensitivity of autophagy.
    Prick T; Thumm M; Köhrer K; Häussinger D; Vom Dahl S
    Biochem J; 2006 Feb; 394(Pt 1):153-61. PubMed ID: 16321140
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The yeast glycerol 3-phosphatases Gpp1p and Gpp2p are required for glycerol biosynthesis and differentially involved in the cellular responses to osmotic, anaerobic, and oxidative stress.
    Pahlman AK; Granath K; Ansell R; Hohmann S; Adler L
    J Biol Chem; 2001 Feb; 276(5):3555-63. PubMed ID: 11058591
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Msn2p and Msn4p control a large number of genes induced at the diauxic transition which are repressed by cyclic AMP in Saccharomyces cerevisiae.
    Boy-Marcotte E; Perrot M; Bussereau F; Boucherie H; Jacquet M
    J Bacteriol; 1998 Mar; 180(5):1044-52. PubMed ID: 9495741
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Identification of positive regulators of the yeast fps1 glycerol channel.
    Beese SE; Negishi T; Levin DE
    PLoS Genet; 2009 Nov; 5(11):e1000738. PubMed ID: 19956799
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Methylated metabolite of arsenite blocks glycerol production in yeast by inhibition of glycerol-3-phosphate dehydrogenase.
    Lee J; Levin DE
    Mol Biol Cell; 2019 Aug; 30(17):2134-2140. PubMed ID: 31141459
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The control of intracellular glycerol in Saccharomyces cerevisiae influences osmotic stress response and resistance to increased temperature.
    Siderius M; Van Wuytswinkel O; Reijenga KA; Kelders M; Mager WH
    Mol Microbiol; 2000 Jun; 36(6):1381-90. PubMed ID: 10931288
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Stl1 transporter mediating the uptake of glycerol is not a weak point of Saccharomyces kudriavzevii's low osmotolerance.
    Zemančíková J; Papoušková K; Peréz-Torrado R; Querol A; Sychrová H
    Lett Appl Microbiol; 2019 Jan; 68(1):81-86. PubMed ID: 30382581
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Expression of the yeast glycogen phosphorylase gene is regulated by stress-response elements and by the HOG MAP kinase pathway.
    Sunnarborg SW; Miller SP; Unnikrishnan I; LaPorte DC
    Yeast; 2001 Dec; 18(16):1505-14. PubMed ID: 11748727
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The Trichoderma atroviride seb1 (stress response element binding) gene encodes an AGGGG-binding protein which is involved in the response to high osmolarity stress.
    Peterbauer CK; Litscher D; Kubicek CP
    Mol Genet Genomics; 2002 Oct; 268(2):223-31. PubMed ID: 12395196
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mutations of the TATA-binding protein confer enhanced tolerance to hyperosmotic stress in Saccharomyces cerevisiae.
    Kim NR; Yang J; Kwon H; An J; Choi W; Kim W
    Appl Microbiol Biotechnol; 2013 Sep; 97(18):8227-38. PubMed ID: 23709042
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Regulation of the Sko1 transcriptional repressor by the Hog1 MAP kinase in response to osmotic stress.
    Proft M; Pascual-Ahuir A; de Nadal E; Ariño J; Serrano R; Posas F
    EMBO J; 2001 Mar; 20(5):1123-33. PubMed ID: 11230135
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Stress resistance and signal fidelity independent of nuclear MAPK function.
    Westfall PJ; Patterson JC; Chen RE; Thorner J
    Proc Natl Acad Sci U S A; 2008 Aug; 105(34):12212-7. PubMed ID: 18719124
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The HOG MAP kinase pathway is required for the induction of methylglyoxal-responsive genes and determines methylglyoxal resistance in Saccharomyces cerevisiae.
    Aguilera J; Rodríguez-Vargas S; Prieto JA
    Mol Microbiol; 2005 Apr; 56(1):228-39. PubMed ID: 15773992
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Suppression mechanism of the calcium sensitivity in Saccharomyces cerevisiae ptp2Δmsg5Δ double disruptant involves a novel HOG-independent function of Ssk2, transcription factor Msn2 and the protein kinase A component Bcy1.
    Laviña WA; Shahsavarani H; Saidi A; Sugiyama M; Kaneko Y; Harashima S
    J Biosci Bioeng; 2014 Feb; 117(2):135-141. PubMed ID: 23953972
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The Saccharomyces cerevisiae zinc finger proteins Msn2p and Msn4p are required for transcriptional induction through the stress response element (STRE).
    Martínez-Pastor MT; Marchler G; Schüller C; Marchler-Bauer A; Ruis H; Estruch F
    EMBO J; 1996 May; 15(9):2227-35. PubMed ID: 8641288
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [The stress response in the yeast Saccharomyces cerevisiae].
    Folch-Mallol JL; Garay-Arroyo A; Lledías F; Covarrubias Robles AA
    Rev Latinoam Microbiol; 2004; 46(1-2):24-46. PubMed ID: 17061523
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The InsP
    Steidle EA; Morrissette VA; Fujimaki K; Chong L; Resnick AC; Capaldi AP; Rolfes RJ
    J Biol Chem; 2020 Feb; 295(7):2043-2056. PubMed ID: 31848224
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Positioning of cell growth and division after osmotic stress requires a MAP kinase pathway.
    Brewster JL; Gustin MC
    Yeast; 1994 Apr; 10(4):425-39. PubMed ID: 7941729
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.