BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 14680476)

  • 41. The Sko1p repressor and Gcn4p activator antagonistically modulate stress-regulated transcription in Saccharomyces cerevisiae.
    Pascual-Ahuir A; Serrano R; Proft M
    Mol Cell Biol; 2001 Jan; 21(1):16-25. PubMed ID: 11113177
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Contribution of the mitogen-activated protein kinase Hog1 to the halotolerance of the marine yeast Debaryomyces hansenii.
    Sánchez NS; Calahorra M; González J; Defosse T; Papon N; Peña A; Coria R
    Curr Genet; 2020 Dec; 66(6):1135-1153. PubMed ID: 32719935
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The mRNA cap-binding protein Cbc1 is required for high and timely expression of genes by promoting the accumulation of gene-specific activators at promoters.
    Li T; De Clercq N; Medina DA; Garre E; Sunnerhagen P; Pérez-Ortín JE; Alepuz P
    Biochim Biophys Acta; 2016 Feb; 1859(2):405-19. PubMed ID: 26775127
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Caffeine activates HOG-signalling and inhibits pseudohyphal growth in Saccharomyces cerevisiae.
    Elhasi T; Blomberg A
    BMC Res Notes; 2023 Apr; 16(1):52. PubMed ID: 37060035
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Short-term response of different Saccharomyces cerevisiae strains to hyperosmotic stress caused by inoculation in grape must: RT-qPCR study and metabolite analysis.
    Noti O; Vaudano E; Pessione E; Garcia-Moruno E
    Food Microbiol; 2015 Dec; 52():49-58. PubMed ID: 26338116
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Altered metabolic regulation owing to gsp1 mutations encoding the nuclear small G protein in Saccharomyces cerevisiae.
    Hayashi N; Oki M
    Curr Genet; 2020 Apr; 66(2):335-344. PubMed ID: 31372715
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Functional characterization of human and fungal MAP kinases in Saccharomyces cerevisiae.
    Alonso-Monge R; Ureña T; Nombela C; Pla J
    Yeast; 2007 Sep; 24(9):715-22. PubMed ID: 17568451
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Yeast Hog1 proteins are sequestered in stress granules during high-temperature stress.
    Shiraishi K; Hioki T; Habata A; Yurimoto H; Sakai Y
    J Cell Sci; 2018 Jan; 131(1):. PubMed ID: 29183915
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Analysis of mitogen-activated protein kinase signaling specificity in response to hyperosmotic stress: use of an analog-sensitive HOG1 allele.
    Westfall PJ; Thorner J
    Eukaryot Cell; 2006 Aug; 5(8):1215-28. PubMed ID: 16896207
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Osmoregulation in Saccharomyces cerevisiae via mechanisms other than the high-osmolarity glycerol pathway.
    Saxena A; Sitaraman R
    Microbiology (Reading); 2016 Sep; 162(9):1511-1526. PubMed ID: 27557593
    [TBL] [Abstract][Full Text] [Related]  

  • 51. SGD1 encodes an essential nuclear protein of Saccharomyces cerevisiae that affects expression of the GPD1 gene for glycerol 3-phosphate dehydrogenase.
    Akhtar N; Påhlman AK; Larsson K; Corbett AH; Adler L
    FEBS Lett; 2000 Oct; 483(2-3):87-92. PubMed ID: 11042259
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Evidence of antagonistic regulation of restart from G(1) delay in response to osmotic stress by the Hog1 and Whi3 in budding yeast.
    Mizunuma M; Ogawa T; Koyama T; Shitamukai A; Tsubakiyama R; Komaruyama T; Yamaguchi T; Kume K; Hirata D
    Biosci Biotechnol Biochem; 2013; 77(10):2002-7. PubMed ID: 24096659
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Specific and global regulation of mRNA stability during osmotic stress in Saccharomyces cerevisiae.
    Romero-Santacreu L; Moreno J; Pérez-Ortín JE; Alepuz P
    RNA; 2009 Jun; 15(6):1110-20. PubMed ID: 19369426
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Osmostress-induced cell volume loss delays yeast Hog1 signaling by limiting diffusion processes and by Hog1-specific effects.
    Babazadeh R; Adiels CB; Smedh M; Petelenz-Kurdziel E; Goksör M; Hohmann S
    PLoS One; 2013; 8(11):e80901. PubMed ID: 24278344
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Coordinated gene regulation in the initial phase of salt stress adaptation.
    Vanacloig-Pedros E; Bets-Plasencia C; Pascual-Ahuir A; Proft M
    J Biol Chem; 2015 Apr; 290(16):10163-75. PubMed ID: 25745106
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Yeast glycogen synthase kinase-3 activates Msn2p-dependent transcription of stress responsive genes.
    Hirata Y; Andoh T; Asahara T; Kikuchi A
    Mol Biol Cell; 2003 Jan; 14(1):302-12. PubMed ID: 12529445
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Novel insights into the osmotic stress response of yeast.
    Mager WH; Siderius M
    FEMS Yeast Res; 2002 Aug; 2(3):251-7. PubMed ID: 12702273
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Osmoregulation and protein expression in a pbs2delta mutant of Saccharomyces cerevisiae during adaptation to hypersaline stress.
    Akhtar N; Blomberg A; Adler L
    FEBS Lett; 1997 Feb; 403(2):173-80. PubMed ID: 9042961
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Effect of the deubiquitination enzyme gene UBP6 on the stress-responsive transcription factor Msn2-mediated control of the amino acid permease Gnp1 in yeast.
    Mat Nanyan NSB; Watanabe D; Sugimoto Y; Takagi H
    J Biosci Bioeng; 2020 Apr; 129(4):423-427. PubMed ID: 31640922
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Cooperative regulation of DOG2, encoding 2-deoxyglucose-6-phosphate phosphatase, by Snf1 kinase and the high-osmolarity glycerol-mitogen-activated protein kinase cascade in stress responses of Saccharomyces cerevisiae.
    Tsujimoto Y; Izawa S; Inoue Y
    J Bacteriol; 2000 Sep; 182(18):5121-6. PubMed ID: 10960096
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.