BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 14680684)

  • 1. Application of a trityl-based radical probe for measuring superoxide.
    Rizzi C; Samouilov A; Kutala VK; Parinandi NL; Zweier JL; Kuppusamy P
    Free Radic Biol Med; 2003 Dec; 35(12):1608-18. PubMed ID: 14680684
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reaction of superoxide with trityl radical: implications for the determination of superoxide by spectrophotometry.
    Kutala VK; Parinandi NL; Zweier JL; Kuppusamy P
    Arch Biochem Biophys; 2004 Apr; 424(1):81-8. PubMed ID: 15019839
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nitro-Triarylmethyl Radical as Dual Oxygen and Superoxide Probe.
    Driesschaert B; Bobko AA; Khramtsov VV; Zweier JL
    Cell Biochem Biophys; 2017 Jun; 75(2):241-246. PubMed ID: 27206803
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tetrathiatriarylmethyl radical with a single aromatic hydrogen as a highly sensitive and specific superoxide probe.
    Liu Y; Song Y; De Pascali F; Liu X; Villamena FA; Zweier JL
    Free Radic Biol Med; 2012 Dec; 53(11):2081-2091. PubMed ID: 23000244
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Triarylmethyl-based biradical as a superoxide probe.
    Poncelet M; Driesschaert B; Bobko AA; Khramtsov VV
    Free Radic Res; 2018 Mar; 52(3):373-379. PubMed ID: 28817975
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reactivity of superoxide anion radical with a perchlorotriphenylmethyl (trityl) radical.
    Kutala VK; Villamena FA; Ilangovan G; Maspoch D; Roques N; Veciana J; Rovira C; Kuppusamy P
    J Phys Chem B; 2008 Jan; 112(1):158-67. PubMed ID: 18081340
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of different methods for measuring the superoxide radical by EPR spectroscopy in buffer, cell lysates and cells.
    Scheinok S; Leveque P; Sonveaux P; Driesschaert B; Gallez B
    Free Radic Res; 2018 Oct; 52(10):1182-1196. PubMed ID: 30362382
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis and characterization of a perchlorotriphenylmethyl (trityl) triester radical: a potential sensor for superoxide and oxygen in biological systems.
    Dang V; Wang J; Feng S; Buron C; Villamena FA; Wang PG; Kuppusamy P
    Bioorg Med Chem Lett; 2007 Jul; 17(14):4062-5. PubMed ID: 17499990
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative measurement of superoxide generation using the spin trap 5-(diethoxyphosphoryl)-5-methyl-1-pyrroline-N-oxide.
    Roubaud V; Sankarapandi S; Kuppusamy P; Tordo P; Zweier JL
    Anal Biochem; 1997 May; 247(2):404-11. PubMed ID: 9177705
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vivo triarylmethyl radical stabilization through encapsulation in Pluronic F-127 hydrogel.
    Abbas K; Boutier-Pischon A; Auger F; Françon D; Almario A; Frapart YM
    J Magn Reson; 2016 Sep; 270():147-156. PubMed ID: 27479038
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thiol-Dependent Reduction of the Triester and Triamide Derivatives of Finland Trityl Radical Triggers O
    Tan X; Chen L; Song Y; Rockenbauer A; Villamena FA; Zweier JL; Liu Y
    Chem Res Toxicol; 2017 Sep; 30(9):1664-1672. PubMed ID: 28759716
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dextran-conjugated tetrathiatriarylmethyl radicals as biocompatible spin probes for EPR spectroscopy and imaging.
    Poncelet M; Driesschaert B; Tseytlin O; Tseytlin M; Eubank TD; Khramtsov VV
    Bioorg Med Chem Lett; 2019 Jul; 29(14):1756-1760. PubMed ID: 31129052
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis and characterization of amino derivatives of persistent trityl radicals as dual function pH and oxygen paramagnetic probes.
    Dhimitruka I; Bobko AA; Hadad CM; Zweier JL; Khramtsov VV
    J Am Chem Soc; 2008 Aug; 130(32):10780-7. PubMed ID: 18636723
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preparation and evaluation of trityl-loaded lipid nanocapsules as oxygen sensors for electron paramagnetic resonance oximetry.
    Nel J; Desmet CM; Driesschaert B; Saulnier P; Lemaire L; Gallez B
    Int J Pharm; 2019 Jan; 554():87-92. PubMed ID: 30399436
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Trityl-based EPR probe with enhanced sensitivity to oxygen.
    Bobko AA; Dhimitruka I; Eubank TD; Marsh CB; Zweier JL; Khramtsov VV
    Free Radic Biol Med; 2009 Sep; 47(5):654-8. PubMed ID: 19523513
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comparative study of EPR spin trapping and cytochrome c reduction techniques for the measurement of superoxide anions.
    Sanders SP; Harrison SJ; Kuppusamy P; Sylvester JT; Zweier JL
    Free Radic Biol Med; 1994 Jun; 16(6):753-61. PubMed ID: 8070678
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dual-function pH and oxygen phosphonated trityl probe.
    Bobko AA; Dhimitruka I; Komarov DA; Khramtsov VV
    Anal Chem; 2012 Jul; 84(14):6054-60. PubMed ID: 22703565
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis, Characterization, and Application of a Highly Hydrophilic Triarylmethyl Radical for Biomedical EPR.
    Sanzhaeva U; Poncelet M; Tseytlin O; Tseytlin M; Gencheva M; Eubank TD; Khramtsov VV; Driesschaert B
    J Org Chem; 2020 Aug; 85(16):10388-10398. PubMed ID: 32698583
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Highly stable dendritic trityl radicals as oxygen and pH probe.
    Liu Y; Villamena FA; Zweier JL
    Chem Commun (Camb); 2008 Sep; (36):4336-8. PubMed ID: 18802562
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A versatile EPR toolbox for the simultaneous measurement of oxygen consumption and superoxide production.
    Donatienne d'Hose ; Danhier P; Northshield H; Isenborghs P; Jordan BF; Gallez B
    Redox Biol; 2021 Apr; 40():101852. PubMed ID: 33418140
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.