These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Autoimmunoregulation and the importance of opioid peptides. Stefano GB; Leung MK; Szûcs A; Ròzsa K; Smith EM; Hughes TK; Ottaviani E; Franceschi C; Duvaux-Miret O; Capron A Ann N Y Acad Sci; 1994 Apr; 712():92-101. PubMed ID: 8192356 [No Abstract] [Full Text] [Related]
3. Invertebrate molecular neuroimmune processes. Salzet M Brain Res Brain Res Rev; 2000 Nov; 34(1-2):69-79. PubMed ID: 11086187 [TBL] [Abstract][Full Text] [Related]
4. Crosstalk between nervous and immune systems through the animal kingdom: focus on opioids. Salzet M; Vieau D; Day R Trends Neurosci; 2000 Nov; 23(11):550-5. PubMed ID: 11074264 [TBL] [Abstract][Full Text] [Related]
5. Life is a huge compromise: is the complexity of the vertebrate immune-neuroendocrine system an advantage or the price to pay? Malagoli D; Ottaviani E Comp Biochem Physiol A Mol Integr Physiol; 2010 Feb; 155(2):134-8. PubMed ID: 19879954 [TBL] [Abstract][Full Text] [Related]
6. Hypoxia defined as a common culprit/initiation factor in mitochondrial-mediated proinflammatory processes. Stefano GB; Kream RM Med Sci Monit; 2015 May; 21():1478-84. PubMed ID: 25997954 [TBL] [Abstract][Full Text] [Related]
7. Nitric oxide: an antiparasitic molecule of invertebrates. Rivero A Trends Parasitol; 2006 May; 22(5):219-25. PubMed ID: 16545612 [TBL] [Abstract][Full Text] [Related]
8. Vertebrate innate immunity resembles a mosaic of invertebrate immune responses. Salzet M Trends Immunol; 2001 Jun; 22(6):285-8. PubMed ID: 11377277 [No Abstract] [Full Text] [Related]
9. On the existence of cytokines in invertebrates. Beschin A; Bilej M; Torreele E; De Baetselier P Cell Mol Life Sci; 2001 May; 58(5-6):801-14. PubMed ID: 11437239 [TBL] [Abstract][Full Text] [Related]
10. Immune system: not so superior. Hedrick SM Science; 2009 Sep; 325(5948):1623-4. PubMed ID: 19779174 [No Abstract] [Full Text] [Related]
11. [Immune system evolution. (From cells to humans)]. Belek AS Mikrobiyol Bul; 1992 Jan; 26(1):90-6. PubMed ID: 1574026 [TBL] [Abstract][Full Text] [Related]
12. Homology and convergence in vertebrate and invertebrate nervous systems. Sandeman D Naturwissenschaften; 1999 Aug; 86(8):378-87. PubMed ID: 10481825 [TBL] [Abstract][Full Text] [Related]
13. Was the evolutionary road towards adaptive immunity paved with endothelium? van Niekerk G; Davis T; Engelbrecht AM Biol Direct; 2015 Sep; 10():47. PubMed ID: 26341882 [TBL] [Abstract][Full Text] [Related]
14. Cytotoxicity and cytotoxic molecules in invertebrates. Nappi AJ; Ottaviani E Bioessays; 2000 May; 22(5):469-80. PubMed ID: 10797487 [TBL] [Abstract][Full Text] [Related]
15. The biological significance of immunity. Ratcliffe NA Dev Comp Immunol; 1989; 13(4):273-83. PubMed ID: 2680665 [TBL] [Abstract][Full Text] [Related]
18. Nitric oxide in invertebrates. Colasanti M; Venturini G Mol Neurobiol; 1998; 17(1-3):157-74. PubMed ID: 9887451 [TBL] [Abstract][Full Text] [Related]
19. A new theory on the common evolutionary origin of natural immunity, inflammation and stress response: the invertebrate phagocytic immunocyte as an eye-witness. Ottaviani E; Franceschi C Domest Anim Endocrinol; 1998 Sep; 15(5):291-6. PubMed ID: 9785032 [TBL] [Abstract][Full Text] [Related]
20. The evolution of adaptive immune systems. Cooper MD; Alder MN Cell; 2006 Feb; 124(4):815-22. PubMed ID: 16497590 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]