These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 14681131)

  • 21. [Case of cortical deafness sparing the music area].
    Lechevalier B; Rossa Y; Eustache F; Schupp C; Boner L; Bazin C
    Rev Neurol (Paris); 1984; 140(3):190-201. PubMed ID: 6729329
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Perception of consonant and dissonant chords: changes in the power of the EEG evoked activity].
    Maslennikova AV; Varlamov AA; Strelets VB
    Zh Vyssh Nerv Deiat Im I P Pavlova; 2012; 62(3):286-91. PubMed ID: 22891574
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cortical motion deafness.
    Ducommun CY; Michel CM; Clarke S; Adriani M; Seeck M; Landis T; Blanke O
    Neuron; 2004 Sep; 43(6):765-77. PubMed ID: 15363389
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Source analysis reveals plasticity in the auditory cortex: evidence for reduced hemispheric asymmetries following unilateral deafness.
    Maslin MR; Munro KJ; El-Deredy W
    Clin Neurophysiol; 2013 Feb; 124(2):391-9. PubMed ID: 22925836
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Characterizing responses from auditory cortex in young people with several years of cochlear implant experience.
    Gordon KA; Tanaka S; Wong DD; Papsin BC
    Clin Neurophysiol; 2008 Oct; 119(10):2347-62. PubMed ID: 18752993
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Anatomical differences in the human inferior colliculus relate to the perceived valence of musical consonance and dissonance.
    Fritz TH; Renders W; Müller K; Schmude P; Leman M; Turner R; Villringer A
    Eur J Neurosci; 2013 Oct; 38(7):3099-105. PubMed ID: 23859464
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Central auditory processing of noncontextual consonance in music: an evoked potential study.
    Itoh K; Suwazono S; Nakada T
    J Acoust Soc Am; 2010 Dec; 128(6):3781-7. PubMed ID: 21218909
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Evidence for functional abnormality in the right auditory cortex during musical hallucinations.
    Kasai K; Asada T; Yumoto M; Takeya J; Matsuda H
    Lancet; 1999 Nov; 354(9191):1703-4. PubMed ID: 10568580
    [TBL] [Abstract][Full Text] [Related]  

  • 29. (Dis-)Harmony in movement: effects of musical dissonance on movement timing and form.
    Komeilipoor N; Rodger MW; Craig CM; Cesari P
    Exp Brain Res; 2015 May; 233(5):1585-95. PubMed ID: 25725774
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Preattentive cortical-evoked responses to pure tones, harmonic tones, and speech: influence of music training.
    Nikjeh DA; Lister JJ; Frisch SA
    Ear Hear; 2009 Aug; 30(4):432-46. PubMed ID: 19494778
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Intracellular recording from the primary auditory cortex.
    Nishiyama N; Paolini AG; Shepherd RK
    Adv Otorhinolaryngol; 2000; 57():18-21. PubMed ID: 11892141
    [No Abstract]   [Full Text] [Related]  

  • 32. Preference for consonance over dissonance by hearing newborns of deaf parents and of hearing parents.
    Masataka N
    Dev Sci; 2006 Jan; 9(1):46-50. PubMed ID: 16445395
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mismatch negativity reflects asymmetric pre-attentive harmonic interval discrimination.
    Wagner L; Rahne T; Plontke SK; Heidekrüger N
    PLoS One; 2018; 13(4):e0196176. PubMed ID: 29694384
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [The phenomenon of hearing: an interdisciplinary discussion. II].
    Keidel WD
    Naturwissenschaften; 1992 Aug; 79(8):347-57. PubMed ID: 1522917
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Differential Processing of Consonance and Dissonance within the Human Superior Temporal Gyrus.
    Foo F; King-Stephens D; Weber P; Laxer K; Parvizi J; Knight RT
    Front Hum Neurosci; 2016; 10():154. PubMed ID: 27148011
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Higher-order auditory areas in congenital deafness: Top-down interactions and corticocortical decoupling.
    Kral A; Yusuf PA; Land R
    Hear Res; 2017 Jan; 343():50-63. PubMed ID: 27637669
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Persistent responsiveness of long-latency auditory cortical activities in response to repeated stimuli of musical timbre and vowel sounds.
    Kuriki S; Ohta K; Koyama S
    Cereb Cortex; 2007 Nov; 17(11):2725-32. PubMed ID: 17289776
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Superior formation of cortical memory traces for melodic patterns in musicians.
    Tervaniemi M; Rytkönen M; Schröger E; Ilmoniemi RJ; Näätänen R
    Learn Mem; 2001; 8(5):295-300. PubMed ID: 11584077
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Objective assessment of electrode discrimination with the auditory change complex in adult cochlear implant users.
    Mathew R; Undurraga J; Li G; Meerton L; Boyle P; Shaida A; Selvadurai D; Jiang D; Vickers D
    Hear Res; 2017 Oct; 354():86-101. PubMed ID: 28826636
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Of kittens and kids: altered cortical maturation following profound deafness and cochlear implant use.
    Ponton CW; Eggermont JJ
    Audiol Neurootol; 2001; 6(6):363-80. PubMed ID: 11847464
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.