These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 14681334)

  • 1. Responses of cerebellar interpositus neurons to predictable perturbations applied to an object held in a precision grip.
    Monzée J; Smith AM
    J Neurophysiol; 2004 Mar; 91(3):1230-9. PubMed ID: 14681334
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Responses of cerebellar Purkinje cells to slip of a hand-held object.
    Dugas C; Smith AM
    J Neurophysiol; 1992 Mar; 67(3):483-95. PubMed ID: 1578241
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of muscimol inactivation of the cerebellar nuclei on precision grip.
    Monzée J; Drew T; Smith AM
    J Neurophysiol; 2004 Mar; 91(3):1240-9. PubMed ID: 14681335
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Activity in ventral and dorsal premotor cortex in response to predictable force-pulse perturbations in a precision grip task.
    Boudreau MJ; Brochier T; Paré M; Smith AM
    J Neurophysiol; 2001 Sep; 86(3):1067-78. PubMed ID: 11535657
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neuronal activity in somatosensory cortex of monkeys using a precision grip. III. Responses to altered friction perturbations.
    Salimi I; Brochier T; Smith AM
    J Neurophysiol; 1999 Feb; 81(2):845-57. PubMed ID: 10036285
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Activity in rostral motor cortex in response to predictable force-pulse perturbations in a precision grip task.
    Boudreau MJ; Smith AM
    J Neurophysiol; 2001 Sep; 86(3):1079-85. PubMed ID: 11535658
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Primary motor cortical responses to perturbations of prehension in the monkey.
    Picard N; Smith AM
    J Neurophysiol; 1992 Nov; 68(5):1882-94. PubMed ID: 1479451
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparing cerebellar and motor cortical activity in reaching and grasping.
    Smith AM; Dugas C; Fortier P; Kalaska J; Picard N
    Can J Neurol Sci; 1993 May; 20 Suppl 3():S53-61. PubMed ID: 8334592
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of the neuronal activity in the SMA and the ventral cingulate cortex during prehension in the monkey.
    Cadoret G; Smith AM
    J Neurophysiol; 1997 Jan; 77(1):153-66. PubMed ID: 9120556
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neuronal activity in somatosensory cortex of monkeys using a precision grip. II. Responses To object texture and weights.
    Salimi I; Brochier T; Smith AM
    J Neurophysiol; 1999 Feb; 81(2):835-44. PubMed ID: 10036284
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Holding an object: neural activity associated with fingertip force adjustments to external perturbations.
    Ehrsson HH; Fagergren A; Ehrsson GO; Forssberg H
    J Neurophysiol; 2007 Feb; 97(2):1342-52. PubMed ID: 16914607
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of central set on anticipatory and triggered grip-force adjustments.
    Winstein CJ; Horak FB; Fisher BE
    Exp Brain Res; 2000 Feb; 130(3):298-308. PubMed ID: 10706429
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Purkinje cell simple spike activity during grasping and lifting objects of different textures and weights.
    Espinoza E; Smith AM
    J Neurophysiol; 1990 Sep; 64(3):698-714. PubMed ID: 2230918
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Maintaining grip: anticipatory and reactive EEG responses to load perturbations.
    Kourtis D; Kwok HF; Roach N; Wing AM; Praamstra P
    J Neurophysiol; 2008 Feb; 99(2):545-53. PubMed ID: 18032560
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Organization of reaching and grasping movements in the primate cerebellar nuclei as revealed by focal muscimol inactivations.
    Mason CR; Miller LE; Baker JF; Houk JC
    J Neurophysiol; 1998 Feb; 79(2):537-54. PubMed ID: 9463420
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adaptive force generation for precision-grip lifting by a spectral timing model of the cerebellum.
    Ulloa A; Bullock D; Rhodes BJ
    Neural Netw; 2003; 16(5-6):521-8. PubMed ID: 12850003
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Grip responses to object load perturbations are stimulus and phase sensitive.
    Mrotek LA; Hart BA; Schot PK; Fennigkoh L
    Exp Brain Res; 2004 Apr; 155(4):413-20. PubMed ID: 14689141
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Activity of interpositus neurons during a visually guided reach.
    Gibson AR; Horn KM; Stein JF; Van Kan PL
    Can J Physiol Pharmacol; 1996 Apr; 74(4):499-512. PubMed ID: 8828895
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Precision grip deficits in cerebellar disorders in man.
    Fellows SJ; Ernst J; Schwarz M; Töpper R; Noth J
    Clin Neurophysiol; 2001 Oct; 112(10):1793-802. PubMed ID: 11595136
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of human precision grip. V. anticipatory and triggered grip actions during sudden loading.
    Eliasson AC; Forssberg H; Ikuta K; Apel I; Westling G; Johansson R
    Exp Brain Res; 1995; 106(3):425-33. PubMed ID: 8983986
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.