These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 14682570)

  • 21. Integrated catalytic wet air oxidation and aerobic biological treatment in a municipal WWTP of a high-strength o-cresol wastewater.
    Suarez-Ojeda ME; Guisasola A; Baeza JA; Fabregat A; Stüber F; Fortuny A; Font J; Carrera J
    Chemosphere; 2007 Feb; 66(11):2096-105. PubMed ID: 17095041
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Increasing the capacity for treatment of chemical plant wastewater by replacing existing suspended carrier media with Kaldnes Moving Bed media at a plant in Singapore.
    Wessman FG; Yan Yuegen E; Zheng Q; He G; Welander T; Rusten B
    Water Sci Technol; 2004; 49(11-12):199-205. PubMed ID: 15303742
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Conventional and thermophilic aerobic treatability of high strength oily pet food wastewater using membrane-coupled bioreactors.
    Kurian R; Acharya C; Nakhla G; Bassi A
    Water Res; 2005 Nov; 39(18):4299-308. PubMed ID: 16221482
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Membrane bioreactors for final treatment of wastewater.
    Galil NI; Sheindorf Ch; Stahl N; Tenenbaum A; Levinsky Y
    Water Sci Technol; 2003; 48(8):103-10. PubMed ID: 14682576
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Advanced treatment of high strength opium alkaloid industry effluents.
    Aydin AF; Altinbas M; Sevimli MF; Ozturk I; Sarikaya HZ
    Water Sci Technol; 2002; 46(9):323-30. PubMed ID: 12448485
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Application of COD fractionation by a new combined technique: comparison of various wastewaters and sources of variability.
    Spérandio M; Urbain V; Ginestet P; Audic MJ; Paul E
    Water Sci Technol; 2001; 43(1):181-90. PubMed ID: 11379089
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Organic and nitrogen removal in a two-stage rotating biological contactor treating municipal wastewater.
    Hiras DN; Manariotis ID; Grigoropoulos SG
    Bioresour Technol; 2004 May; 93(1):91-8. PubMed ID: 14987726
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Treatment of strongflow wool scouring effluent by biological emulsion destabilisation.
    Poole AJ; Cord-Ruwisch R
    Water Res; 2004 Mar; 38(6):1419-26. PubMed ID: 15016518
    [TBL] [Abstract][Full Text] [Related]  

  • 29. COD and BOD reduction from coffee processing wastewater using Avacado peel carbon.
    Devi R; Singh V; Kumar A
    Bioresour Technol; 2008 Apr; 99(6):1853-60. PubMed ID: 17493806
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The efficacy of ozone as a pre- and post-treatment option for UASB-treated food processing wastewaters.
    Sigge GO; Britz TJ; Fourie PC; Barnardt CA
    Water Sci Technol; 2005; 52(1-2):167-73. PubMed ID: 16180424
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mechanism of aerobic biological destabilisation of wool scour effluent emulsions.
    Poole AJ; Cord-Ruwisch R; William Jones F
    Water Res; 2005 Jul; 39(12):2756-62. PubMed ID: 15979119
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Activity of sulphate reducing bacteria according to COD/SO4(2-) ratio of acrylonitrile wastewater containing high sulphate.
    Byun IG; Lee TH; Kim YO; Song SK; Park TJ
    Water Sci Technol; 2004; 49(5-6):229-35. PubMed ID: 15137428
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Biodegradation kinetics of high strength oily pet food wastewater in a membrane-coupled bioreactor (MBR).
    Kurian R; Nakhla G; Bassi A
    Chemosphere; 2006 Nov; 65(7):1204-11. PubMed ID: 16697028
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Technological transfer to demonstrative scale of sequencing batch biofilter granular reactor (SBBGR) technology for municipal and industrial wastewater treatment.
    Di Iaconi C; De Sanctis M; Rossetti S; Ramadori R
    Water Sci Technol; 2008; 58(2):367-72. PubMed ID: 18701787
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Vermifilters: a tool for aerobic biological treatment of herbal pharmaceutical wastewater.
    Dhadse S; Satyanarayan S; Chaudhari PR; Wate SR
    Water Sci Technol; 2010; 61(9):2375-80. PubMed ID: 20418635
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Micro-electrolysis technology for industrial wastewater treatment.
    Jin YZ; Zhang YF; Li W
    J Environ Sci (China); 2003 May; 15(3):334-8. PubMed ID: 12938982
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Membrane bio-reactor for advanced textile wastewater treatment and reuse.
    Lubello C; Gori R
    Water Sci Technol; 2004; 50(2):113-9. PubMed ID: 15344781
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Nutrient removal from slaughterhouse wastewater in an intermittently aerated sequencing batch reactor.
    Li JP; Healy MG; Zhan XM; Rodgers M
    Bioresour Technol; 2008 Nov; 99(16):7644-50. PubMed ID: 18359223
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comparison of coagulants and coagulation aids for treatment of meat processing wastewater by column flotation.
    de Sena RF; Moreira RF; José HJ
    Bioresour Technol; 2008 Nov; 99(17):8221-5. PubMed ID: 18442902
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Psychrophilic and mesophilic anaerobic digestion of brewery effluent: a comparative study.
    Connaughton S; Collins G; O'Flaherty V
    Water Res; 2006 Jul; 40(13):2503-10. PubMed ID: 16814840
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.