BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 14682632)

  • 1. Modeling of anomalies due to hydrophones in continuous-wave ultrasound fields.
    Huttunen T; Kaipio JP; Hynynen K
    IEEE Trans Ultrason Ferroelectr Freq Control; 2003 Nov; 50(11):1486-500. PubMed ID: 14682632
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improved measurement of acoustic output using complex deconvolution of hydrophone sensitivity.
    Wear KA; Gammell PM; Maruvada S; Liu Y; Harris GR
    IEEE Trans Ultrason Ferroelectr Freq Control; 2014 Jan; 61(1):62-75. PubMed ID: 24402896
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Probing acoustic fields of clinically relevant transducers: the effect of hydrophone probes' finite apertures and bandwidths.
    Radulescu EG; Lewin PA; Wójcik J; Nowicki A
    IEEE Trans Ultrason Ferroelectr Freq Control; 2004 Oct; 51(10):1262-70. PubMed ID: 15553510
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Time-delay spectrometry measurement of magnitude and phase of hydrophone response.
    Wear KA; Gammell PM; Maruvada S; Liu Y; Harris GR
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Nov; 58(11):2325-33. PubMed ID: 22083766
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Variation of High-Intensity Therapeutic Ultrasound (HITU) Pressure Field Characterization: Effects of Hydrophone Choice, Nonlinearity, Spatial Averaging and Complex Deconvolution.
    Liu Y; Wear KA; Harris GR
    Ultrasound Med Biol; 2017 Oct; 43(10):2329-2342. PubMed ID: 28735734
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Membrane hydrophone phase characteristics through nonlinear acoustics measurements.
    Bloomfield PE; Gandhi G; Lewin PA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Nov; 58(11):2418-37. PubMed ID: 22083775
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Correction for Spatial Averaging Artifacts in Hydrophone Measurements of High-Intensity Therapeutic Ultrasound: An Inverse Filter Approach.
    Wear KA; Howard SM
    IEEE Trans Ultrason Ferroelectr Freq Control; 2019 Sep; 66(9):1453-1464. PubMed ID: 31247548
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Are hydrophones of diameter 0.5 mm small enough to characterise diagnostic ultrasound equipment?
    Smith RA
    Phys Med Biol; 1989 Nov; 34(11):1593-607. PubMed ID: 2685834
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Harmonic ultrasonic field of medical phased arrays: simulations and measurements.
    Bouakaz A; Lancée CT; de Jong N
    IEEE Trans Ultrason Ferroelectr Freq Control; 2003 Jun; 50(6):730-5. PubMed ID: 12839187
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A full-wave Helmholtz model for continuous-wave ultrasound transmission.
    Huttunen T; Malinen M; Kaipio JP; White PJ; Hynynen K
    IEEE Trans Ultrason Ferroelectr Freq Control; 2005 Mar; 52(3):397-409. PubMed ID: 15857048
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigation of the repeatability and reproducibility of hydrophone measurements of medical ultrasound fields.
    Martin E; Treeby B
    J Acoust Soc Am; 2019 Mar; 145(3):1270. PubMed ID: 31067926
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A KLM-circuit model of a multi-layer transducer for acoustic bladder volume measurements.
    Merks EJ; Borsboom JM; Bom N; van der Steen AF; de Jong N
    Ultrasonics; 2006 Dec; 44 Suppl 1():e705-10. PubMed ID: 16875709
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A nonlinear propagation model-based phase calibration technique for membrane hydrophones.
    Cooling MP; Humphrey VF
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Jan; 55(1):84-93. PubMed ID: 18334316
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Calibration of a focusing transducer and miniature hydrophone as well as acoustic power measurement based on free-field reciprocity in a spherically focused wave field.
    Shou W; Duan S; He P; Xia R; Qian D
    IEEE Trans Ultrason Ferroelectr Freq Control; 2006 Mar; 53(3):564-70. PubMed ID: 16555764
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of micromachined ultrasonic transducers using light diffraction tomography.
    Almqvist M; Törndahl M; Nilsson M; Lilliehorn T
    IEEE Trans Ultrason Ferroelectr Freq Control; 2005 Dec; 52(12):2298-302. PubMed ID: 16463495
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lens-focused transducer modeling using an extended KLM model.
    Maréchal P; Levassort F; Tran-Huu-Hue LP; Lethiecq M
    Ultrasonics; 2007 May; 46(2):155-67. PubMed ID: 17382986
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pressure Pulse Distortion by Needle and Fiber-Optic Hydrophones due to Nonuniform Sensitivity.
    Wear KA; Liu Y; Harris GR
    IEEE Trans Ultrason Ferroelectr Freq Control; 2018 Feb; 65(2):137-148. PubMed ID: 29389648
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Broadband PVDF membrane hydrophone for comparisons of hydrophone calibration methods up to 140 MHz.
    Wilkens V; Molkenstruck W
    IEEE Trans Ultrason Ferroelectr Freq Control; 2007 Sep; 54(9):1784-91. PubMed ID: 17941384
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultrasound wave propagation in tissue and scattering from microbubbles for echo particle image velocimetry technique.
    Mukdadi O; Shandas R
    Biomed Sci Instrum; 2004; 40():364-70. PubMed ID: 15133985
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Calibration of miniature medical ultrasonic hydrophones for frequencies in the range 100 to 500 kHz using an ultrasonically absorbing waveguide.
    Rajagopal S; Zeqiri B; Gélat PN
    IEEE Trans Ultrason Ferroelectr Freq Control; 2014 May; 61(5):765-78. PubMed ID: 24803021
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.