These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 14682641)

  • 41. Optimization of the gain-bandwidth product of capacitive micromachined ultrasonic transducers.
    Olcum S; Senlik MN; Atalar A
    IEEE Trans Ultrason Ferroelectr Freq Control; 2005 Dec; 52(12):2211-9. PubMed ID: 16463487
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Finite-element analysis of capacitive micromachined ultrasonic transducers.
    Yaralioglu GG; Ergun AS; Khuri-Yakub BT
    IEEE Trans Ultrason Ferroelectr Freq Control; 2005 Dec; 52(12):2185-98. PubMed ID: 16463485
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Outperforming piezoelectric ultrasonics with high-reliability single-membrane CMUT array elements.
    Dew EB; Kashani Ilkhechi A; Maadi M; Haven NJM; Zemp RJ
    Microsyst Nanoeng; 2022; 8():59. PubMed ID: 35669969
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Research on Broadband Matching Method for Capacitive Micromachined Ultrasonic Transducers Based on PDMS/TiO
    Gao B; Zhang S; He C; Wang R; Yang Y; Jia L; Wang Z; Wu Y; Hu S; Zhang W
    Micromachines (Basel); 2022 Oct; 13(11):. PubMed ID: 36363848
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Fabrication and testing of polymer-based capacitive micromachined ultrasound transducers for medical imaging.
    Gerardo CD; Cretu E; Rohling R
    Microsyst Nanoeng; 2018; 4():19. PubMed ID: 31057907
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Comparison of conventional and collapsed region operation of capacitive micromachined ultrasonic transducers.
    Huang Y; Haeggström E; Bayram B; Zhuang X; Ergun AS; Cheng CH; Khuri-Yakub BT
    IEEE Trans Ultrason Ferroelectr Freq Control; 2006 Oct; 53(10):1918-33. PubMed ID: 17036801
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Transparent capacitive micromachined ultrasonic transducer (CMUT) arrays for real-time photoacoustic applications.
    Ilkhechi AK; Ceroici C; Li Z; Zemp R
    Opt Express; 2020 Apr; 28(9):13750-13760. PubMed ID: 32403843
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A Wearable Ultrasonic Neurostimulator-Part II: A 2D CMUT Phased Array System With a Flip-Chip Bonded ASIC.
    Seok C; Adelegan OJ; Biliroglu AO; Yamaner FY; Oralkan O
    IEEE Trans Biomed Circuits Syst; 2021 Aug; 15(4):705-718. PubMed ID: 34398764
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A photoacoustic imager with light illumination through an infrared-transparent silicon CMUT array.
    Chen J; Wang M; Cheng JC; Wang YH; Li PC; Cheng X
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Apr; 59(4):766-75. PubMed ID: 22547287
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Experimental Analysis of Bisbenzocyclobutene Bonded Capacitive Micromachined Ultrasonic Transducers.
    Manwar R; Chowdhury S
    Sensors (Basel); 2016 Jun; 16(7):. PubMed ID: 27347955
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Fabrication and Packaging of CMUT Using Low Temperature Co-Fired Ceramic.
    Yildiz F; Matsunaga T; Haga Y
    Micromachines (Basel); 2018 Oct; 9(11):. PubMed ID: 30715052
    [TBL] [Abstract][Full Text] [Related]  

  • 52. An Analysis Method for Capacitive Micromachined Ultrasound Transducer (CMUT) Energy Conversion during Large Signal Operation.
    Pirouz A; Degertekin FL
    Sensors (Basel); 2019 Feb; 19(4):. PubMed ID: 30791556
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Biasing of Capacitive Micromachined Ultrasonic Transducers.
    Caliano G; Matrone G; Savoia AS
    IEEE Trans Ultrason Ferroelectr Freq Control; 2017 Feb; 64(2):402-413. PubMed ID: 27810808
    [TBL] [Abstract][Full Text] [Related]  

  • 54. CMUT With Substrate-Embedded Springs For Non-Flexural Plate Movement.
    Nikoozadeh A; Khuri-Yakub PT
    Proc IEEE Ultrason Symp; 2010; 2010():1510-1513. PubMed ID: 25264419
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Capacitive micromachined ultrasonic transducer arrays as tunable acoustic metamaterials.
    Lani SW; Wasequr Rashid M; Hasler J; Sabra KG; Levent Degertekin F
    Appl Phys Lett; 2014 Feb; 104(5):051914. PubMed ID: 24753623
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Frequency Tuning of Collapse-Mode Capacitive Micromachined Ultrasonic Transducer.
    Pekař M; Dittmer WU; Mihajlović N; van Soest G; de Jong N
    Ultrasonics; 2017 Feb; 74():144-152. PubMed ID: 27780034
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A Handheld Imaging Probe for Acoustic Angiography With an Ultrawideband Capacitive Micromachined Ultrasonic Transducer (CMUT) Array.
    Sanders JL; Biliroglu AO; Newsome IG; Adelegan OJ; Yamaner FY; Dayton PA; Oralkan O
    IEEE Trans Ultrason Ferroelectr Freq Control; 2022 Jul; 69(7):2318-2330. PubMed ID: 35522635
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Design of a Collapse-Mode CMUT With an Embossed Membrane for Improving Output Pressure.
    Yu Y; Pun SH; Mak PU; Cheng CH; Wang J; Mak PI; Vai MI
    IEEE Trans Ultrason Ferroelectr Freq Control; 2016 Jun; 63(6):854-63. PubMed ID: 27101605
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Dual-Backplate CMUTs With Wide Bandwidth and Low Driving Voltage for Airborne Applications.
    Anzinger S; Bretthauer C; Wasisto HS; Dehe A
    IEEE Trans Ultrason Ferroelectr Freq Control; 2023 Oct; 70(10):1286-1294. PubMed ID: 37647181
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Low Temperature CMUT Fabrication Process with Dielectric Lift-off Membrane Support for Improved Reliability.
    Pirouz A; Degertekin FL
    J Micromech Microeng; 2018 Aug; 28(8):. PubMed ID: 29785066
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.