These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 14682641)

  • 61. Low Temperature CMUT Fabrication Process with Dielectric Lift-off Membrane Support for Improved Reliability.
    Pirouz A; Degertekin FL
    J Micromech Microeng; 2018 Aug; 28(8):. PubMed ID: 29785066
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Ultra-Low-Voltage Capacitive Micromachined Ultrasonic Transducers with Increased Output Pressure Due to Piston-Structured Plates.
    Merbeler F; Wismath S; Haubold M; Bretthauer C; Kupnik M
    Micromachines (Basel); 2022 Apr; 13(5):. PubMed ID: 35630143
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Capacitive micromachined ultrasonic transducers for therapeutic ultrasound applications.
    Wong SH; Kupnik M; Watkins RD; Butts-Pauly K; Khuri-Yakub BT
    IEEE Trans Biomed Eng; 2010 Jan; 57(1):114-23. PubMed ID: 19628448
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Large-Scale Nonlinear Lumped and Integrated Field Simulations of Top-Orthogonal-to-Bottom-Electrode CMUT Architectures.
    Ceroici C; Zemp RJ
    IEEE Trans Ultrason Ferroelectr Freq Control; 2017 Jul; 64(7):1087-1091. PubMed ID: 28499995
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Characterization of one-dimensional capacitive micromachined ultrasonic immersion transducer arrays.
    Jin X; Oralkan O; Degertekin FL; Khuri-Yakub BT
    IEEE Trans Ultrason Ferroelectr Freq Control; 2001 May; 48(3):750-60. PubMed ID: 11381699
    [TBL] [Abstract][Full Text] [Related]  

  • 66. A Fast-Switching (1.35-μs) Low-Control-Voltage (2.5-V) MEMS T/R Switch Monolithically Integrated With a Capacitive Micromachined Ultrasonic Transducer (CMUT).
    Zhang X; Adelegan OJ; Yamaner FY; Oralkan Ö
    J Microelectromech Syst; 2018 Apr; 27(2):190-200. PubMed ID: 33746472
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Exploitation of capacitive micromachined transducers for nonlinear ultrasound imaging.
    Novell A; Legros M; Felix N; Bouakaz A
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Dec; 56(12):2733-43. PubMed ID: 20040410
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Advances in Capacitive Micromachined Ultrasonic Transducers.
    Brenner K; Ergun AS; Firouzi K; Rasmussen MF; Stedman Q; Khuri-Yakub BP
    Micromachines (Basel); 2019 Feb; 10(2):. PubMed ID: 30813447
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Diamond-based capacitive micromachined ultrasonic transducers in immersion.
    Cetin AM; Bayram B
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Feb; 60(2):414-20. PubMed ID: 23357916
    [TBL] [Abstract][Full Text] [Related]  

  • 70. An Air-Coupled Multiple Moving Membrane Micromachined Ultrasonic Transducer With Inverse Biasing Functionality.
    Emadi A; Buchanan DA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2016 Aug; 63(8):1140-7. PubMed ID: 27254861
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Experimental Characterization of an Embossed Capacitive Micromachined Ultrasonic Transducer Cell.
    Yu Y; Wang J; Liu X; Pun SH; Zhang S; Cheng CH; Lei KF; Vai MI; Mak PU
    Micromachines (Basel); 2020 Feb; 11(2):. PubMed ID: 32093303
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Acoustic backing in 3-D integration of CMUT with front-end electronics.
    Berg S; Rønnekleiv A
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Jul; 59(7):1537-49. PubMed ID: 22828848
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Singulation for imaging ring arrays of capacitive micromachined ultrasonic transducers.
    Chang C; Moini A; Nikoozadeh A; Sarioglu AF; Apte N; Zhuang X; Khuri-Yakub BT
    J Micromech Microeng; 2014 Oct; 24(10):. PubMed ID: 27076702
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Encapsulation of Capacitive Micromachined Ultrasonic Transducers Using Viscoelastic Polymer.
    Lin DS; Zhuang X; Wong SH; Kupnik M; Khuri-Yakub BT
    J Microelectromech Syst; 2010 Dec; 19(6):1341-1351. PubMed ID: 21170294
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Designing transmitting CMUT cells for airborne applications.
    Unlügedik A; Taşdelen A; Atalar A; Köymen H
    IEEE Trans Ultrason Ferroelectr Freq Control; 2014 Nov; 61(11):1899-910. PubMed ID: 25389168
    [TBL] [Abstract][Full Text] [Related]  

  • 76. PSpice modeling of capacitive microfabricated ultrasonic transducers.
    Caliano G; Caronti A; Baruzzi M; Rubini A; Iula A; Carotenuto R; Pappalardo M
    Ultrasonics; 2002 May; 40(1-8):449-55. PubMed ID: 12159982
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Noninvasive fluid bubble detection based on capacitive micromachined ultrasonic transducers.
    Yuan J; Li Z; Ma Q; Li J; Li Z; Zhao Y; Qin S; Shi X; Zhao L; Yang P; Luo G; Wang X; Teh KS; Jiang Z
    Microsyst Nanoeng; 2023; 9():20. PubMed ID: 36844939
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Novel, wide bandwidth, micromachined ultrasonic transducers.
    Noble RA; Jones AD; Robertson TJ; Hutchins DA; Billson DR
    IEEE Trans Ultrason Ferroelectr Freq Control; 2001 Nov; 48(6):1495-507. PubMed ID: 11800110
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Fabricating capacitive micromachined ultrasonic transducers with a novel silicon-nitride-based wafer bonding process.
    Logan A; Yeow JT
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 May; 56(5):1074-84. PubMed ID: 19473926
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Capacitive micromachined ultrasonic transducers: fabrication technology.
    Ergun AS; Huang Y; Zhuang X; Oralkan O; Yaralioglu GG; Khuri-Yakub BT
    IEEE Trans Ultrason Ferroelectr Freq Control; 2005 Dec; 52(12):2242-58. PubMed ID: 16463490
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.