These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 14682803)

  • 1. Diffusive intertwining of two fluid phases in chemically patterned microchannels.
    Kuksenok O; Jasnow D; Balazs AC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Nov; 68(5 Pt 1):051505. PubMed ID: 14682803
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simulating the dynamic behavior of immiscible binary fluids in three-dimensional chemically patterned microchannels.
    Kuksenok O; Balazs AC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jul; 68(1 Pt 1):011502. PubMed ID: 12935145
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Periodic droplet formation in chemically patterned microchannels.
    Kuksenok O; Jasnow D; Yeomans J; Balazs AC
    Phys Rev Lett; 2003 Sep; 91(10):108303. PubMed ID: 14525516
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Using patterned substrates to promote mixing in microchannels.
    Kuksenok O; Yeomans JM; Balazs AC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Mar; 65(3 Pt 1):031502. PubMed ID: 11909061
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pattern formation in binary fluids confined between rough, chemically heterogeneous surfaces.
    Verberg R; Pooley CM; Yeomans JM; Balazs AC
    Phys Rev Lett; 2004 Oct; 93(18):184501. PubMed ID: 15525167
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Convection-driven pattern formation in phase-separating binary fluids.
    Pooley CM; Kuksenok O; Balazs AC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Mar; 71(3 Pt 1):030501. PubMed ID: 15903398
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular dynamics of immiscible fluids in chemically patterned nanochannels.
    Cieplak M; Banavar JR
    J Chem Phys; 2008 Mar; 128(10):104709. PubMed ID: 18345921
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stabilization of liquid interface and control of two-phase confluence and separation in glass microchips by utilizing octadecylsilane modification of microchannels.
    Hibara A; Nonaka M; Hisamoto H; Uchiyama K; Kikutani Y; Tokeshi M; Kitamori T
    Anal Chem; 2002 Apr; 74(7):1724-8. PubMed ID: 12033266
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design and simulation of the micromixer with chaotic advection in twisted microchannels.
    Jen CP; Wu CY; Lin YC; Wu CY
    Lab Chip; 2003 May; 3(2):77-81. PubMed ID: 15100786
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Local control of periodic pattern formation in binary fluids within microchannels.
    Kuksenok O; Jasnow D; Balazs AC
    Phys Rev Lett; 2005 Dec; 95(24):240603. PubMed ID: 16384364
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Torsion-induced phase transitions in fluids confined between chemically decorated substrates.
    Sacquin-Mora S; Fuchs AH; Schoen M
    J Chem Phys; 2004 Nov; 121(18):9077-86. PubMed ID: 15527374
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phase diagrams of binary mixtures of patchy colloids with distinct numbers and types of patches: the empty fluid regime.
    de las Heras D; Tavares JM; da Gama MM
    J Chem Phys; 2011 Mar; 134(10):104904. PubMed ID: 21405190
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermal relaxation and critical instability of near-critical fluid microchannel flow.
    Chen L; Zhang XR; Okajima J; Maruyama S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Apr; 87(4):043016. PubMed ID: 23679522
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Designing patterned substrates to regulate the movement of capsules in microchannels.
    Usta OB; Nayhouse M; Alexeev A; Balazs AC
    J Chem Phys; 2008 Jun; 128(23):235102. PubMed ID: 18570531
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling the interactions between compliant microcapsules and pillars in microchannels.
    Zhu G; Alexeev A; Kumacheva E; Balazs AC
    J Chem Phys; 2007 Jul; 127(3):034703. PubMed ID: 17655451
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two-fluid confined flow in a cylinder driven by a rotating end wall.
    Brady PT; Herrmann M; Lopez JM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 2):016308. PubMed ID: 22400659
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fork in the road: patterned surfaces direct microcapsules to make a decision.
    Usta OB; Alexeev A; Balazs AC
    Langmuir; 2007 Oct; 23(22):10887-90. PubMed ID: 17880118
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SAFT-γ force field for the simulation of molecular fluids. 1. A single-site coarse grained model of carbon dioxide.
    Avendaño C; Lafitte T; Galindo A; Adjiman CS; Jackson G; Müller EA
    J Phys Chem B; 2011 Sep; 115(38):11154-69. PubMed ID: 21815624
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electric-field-driven contact-line dynamics of two immiscible fluids over chemically patterned surfaces in narrow confinements.
    Mondal PK; Ghosh U; Bandopadhyay A; DasGupta D; Chakraborty S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Aug; 88(2):023022. PubMed ID: 24032938
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Liquid-vapor interfaces of patchy colloids.
    Oleksy A; Teixeira PI
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jan; 91(1):012301. PubMed ID: 25679617
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.