These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Interference and crosstalk in double optical tweezers using a single laser source. Mangeol P; Bockelmann U Rev Sci Instrum; 2008 Aug; 79(8):083103. PubMed ID: 19044332 [TBL] [Abstract][Full Text] [Related]
4. Advanced optical tweezers for the study of cellular and molecular biomechanics. Brouhard GJ; Schek HT; Hunt AJ IEEE Trans Biomed Eng; 2003 Jan; 50(1):121-5. PubMed ID: 12617534 [TBL] [Abstract][Full Text] [Related]
5. Localized dynamic light scattering: a new approach to dynamic measurements in optical microscopy. Meller A; Bar-Ziv R; Tlusty T; Moses E; Stavans J; Safran SA Biophys J; 1998 Mar; 74(3):1541-8. PubMed ID: 9512050 [TBL] [Abstract][Full Text] [Related]
6. Three-dimensional high-resolution particle tracking for optical tweezers by forward scattered light. Pralle A; Prummer M; Florin EL; Stelzer EH; Hörber JK Microsc Res Tech; 1999 Mar; 44(5):378-86. PubMed ID: 10090214 [TBL] [Abstract][Full Text] [Related]
7. Dual-trap technique for reduction of low-frequency noise in force measuring optical tweezers. Klein M; Andersson M; Axner O; Fällman E Appl Opt; 2007 Jan; 46(3):405-12. PubMed ID: 17228388 [TBL] [Abstract][Full Text] [Related]
9. Quantitative measurements of force and displacement using an optical trap. Simmons RM; Finer JT; Chu S; Spudich JA Biophys J; 1996 Apr; 70(4):1813-22. PubMed ID: 8785341 [TBL] [Abstract][Full Text] [Related]
10. Single beam optical trapping integrated in a confocal microscope for biological applications. Visscher K; Brakenhoff GJ Cytometry; 1991; 12(6):486-91. PubMed ID: 1764973 [TBL] [Abstract][Full Text] [Related]
11. Non-harmonic potential of a single beam optical trap. Richardson AC; Reihani SN; Oddershede LB Opt Express; 2008 Sep; 16(20):15709-17. PubMed ID: 18825209 [TBL] [Abstract][Full Text] [Related]
12. Magnetic tweezers: micromanipulation and force measurement at the molecular level. Gosse C; Croquette V Biophys J; 2002 Jun; 82(6):3314-29. PubMed ID: 12023254 [TBL] [Abstract][Full Text] [Related]
13. 10-fold detection range increase in quadrant-photodiode position sensing for photonic force microscope. Perrone S; Volpe G; Petrov D Rev Sci Instrum; 2008 Oct; 79(10):106101. PubMed ID: 19044745 [TBL] [Abstract][Full Text] [Related]
14. The effect of immersion oil in optical tweezers. Mahmoudi A; Reihani SN Opt Express; 2011 Aug; 19(16):14794-800. PubMed ID: 21934840 [TBL] [Abstract][Full Text] [Related]
16. High precision and continuous optical transport using a standing wave optical line trap. Demergis V; Florin EL Opt Express; 2011 Oct; 19(21):20833-48. PubMed ID: 21997093 [TBL] [Abstract][Full Text] [Related]
17. An efficient method for the creation of tunable optical line traps via control of gradient and scattering forces. Tietjen GT; Kong Y; Parthasarathy R Opt Express; 2008 Jul; 16(14):10341-8. PubMed ID: 18607444 [TBL] [Abstract][Full Text] [Related]
18. Fine profile of actomyosin motility fluctuation revealed by using 40-nm probe beads. Nakayama H; Yamaga T; Kunioka Y Biochem Biophys Res Commun; 1998 May; 246(1):261-6. PubMed ID: 9600103 [TBL] [Abstract][Full Text] [Related]
19. Microscopy of biological sample through advanced diffractive optics from visible to X-ray wavelength regime. Di Fabrizio E; Cojoc D; Emiliani V; Cabrini S; Coppey-Moisan M; Ferrari E; Garbin V; Altissimo M Microsc Res Tech; 2004 Nov; 65(4-5):252-62. PubMed ID: 15630683 [TBL] [Abstract][Full Text] [Related]
20. Cluster formation of nanoparticles in an optical trap studied by fluorescence correlation spectroscopy. Hosokawa C; Yoshikawa H; Masuhara H Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Aug; 72(2 Pt 1):021408. PubMed ID: 16196566 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]