These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
197 related articles for article (PubMed ID: 14682856)
1. Optimal analysis on the performance of an irreversible harmonic quantum Brayton refrigeration cycle. Lin B; Chen J Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Nov; 68(5 Pt 2):056117. PubMed ID: 14682856 [TBL] [Abstract][Full Text] [Related]
2. Performance analysis of an irreversible quantum heat engine working with harmonic oscillators. Lin B; Chen J Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Apr; 67(4 Pt 2):046105. PubMed ID: 12786434 [TBL] [Abstract][Full Text] [Related]
3. Quantum refrigeration cycles using spin-1/2 systems as the working substance. He J; Chen J; Hua B Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Mar; 65(3 Pt 2A):036145. PubMed ID: 11909203 [TBL] [Abstract][Full Text] [Related]
4. Generalized model and optimum performance of an irreversible quantum Brayton engine with spin systems. Wu F; Chen L; Sun F; Wu C; Li Q Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jan; 73(1 Pt 2):016103. PubMed ID: 16486212 [TBL] [Abstract][Full Text] [Related]
5. Quantum Brayton cycle with coupled systems as working substance. Huang XL; Wang LC; Yi XX Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):012144. PubMed ID: 23410319 [TBL] [Abstract][Full Text] [Related]
6. Finite-power performance of quantum heat engines in linear response. Liu Q; He J; Ma Y; Wang J Phys Rev E; 2019 Jul; 100(1-1):012105. PubMed ID: 31499858 [TBL] [Abstract][Full Text] [Related]
7. Coefficient of performance under maximum χ criterion in a two-level atomic system as a refrigerator. Yuan Y; Wang R; He J; Ma Y; Wang J Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Nov; 90(5-1):052151. PubMed ID: 25493783 [TBL] [Abstract][Full Text] [Related]
8. Efficiency at maximum power of a quantum heat engine based on two coupled oscillators. Wang J; Ye Z; Lai Y; Li W; He J Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jun; 91(6):062134. PubMed ID: 26172688 [TBL] [Abstract][Full Text] [Related]
9. Performance characteristics and optimal analysis of a nanosized quantum dot photoelectric refrigerator. Li C; Zhang Y; Wang J; He J Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Dec; 88(6):062120. PubMed ID: 24483399 [TBL] [Abstract][Full Text] [Related]
10. Thermodynamic Analysis of an Irreversible Maisotsenko Reciprocating Brayton Cycle. Zhu F; Chen L; Wang W Entropy (Basel); 2018 Mar; 20(3):. PubMed ID: 33265258 [TBL] [Abstract][Full Text] [Related]
11. Quest for absolute zero in the presence of external noise. Torrontegui E; Kosloff R Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Sep; 88(3):032103. PubMed ID: 24125210 [TBL] [Abstract][Full Text] [Related]
16. Efficiency at maximum power of a heat engine working with a two-level atomic system. Wang R; Wang J; He J; Ma Y Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Apr; 87(4):042119. PubMed ID: 23679385 [TBL] [Abstract][Full Text] [Related]
17. Performance enhancement of quantum Brayton engine via Bose-Einstein condensation. Ruan H; Yuan J; Xu Y; He J; Ma Y; Wang J Phys Rev E; 2024 Feb; 109(2-1):024126. PubMed ID: 38491606 [TBL] [Abstract][Full Text] [Related]
18. Four-Objective Optimizations for an Improved Irreversible Closed Modified Simple Brayton Cycle. Tang C; Chen L; Feng H; Ge Y Entropy (Basel); 2021 Feb; 23(3):. PubMed ID: 33652671 [TBL] [Abstract][Full Text] [Related]
19. Optimal Power and Efficiency of Multi-Stage Endoreversible Quantum Carnot Heat Engine with Harmonic Oscillators at the Classical Limit. Meng Z; Chen L; Wu F Entropy (Basel); 2020 Apr; 22(4):. PubMed ID: 33286231 [TBL] [Abstract][Full Text] [Related]
20. Exact master equation and quantum decoherence of two coupled harmonic oscillators in a general environment. Chou CH; Yu T; Hu BL Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jan; 77(1 Pt 1):011112. PubMed ID: 18351823 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]