These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
183 related articles for article (PubMed ID: 14682875)
1. Semiclassical study on tunneling processes via complex-domain chaos. Onishi T; Shudo A; Ikeda KS; Takahashi K Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Nov; 68(5 Pt 2):056211. PubMed ID: 14682875 [TBL] [Abstract][Full Text] [Related]
2. Tunneling mechanism due to chaos in a complex phase space. Onishi T; Shudo A; Ikeda KS; Takahashi K Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Aug; 64(2 Pt 2):025201. PubMed ID: 11497640 [TBL] [Abstract][Full Text] [Related]
3. Ergodicity of complex dynamics and quantum tunneling in nonintegrable systems. Koda R; Hanada Y; Shudo A Phys Rev E; 2023 Nov; 108(5-1):054219. PubMed ID: 38115491 [TBL] [Abstract][Full Text] [Related]
4. Semiclassical time evolution of the density matrix and tunneling. Ankerhold J; Grabert H Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Apr; 61(4 Pt A):3450-65. PubMed ID: 11088122 [TBL] [Abstract][Full Text] [Related]
5. Resonance- and chaos-assisted tunneling in mixed regular-chaotic systems. Eltschka C; Schlagheck P Phys Rev Lett; 2005 Jan; 94(1):014101. PubMed ID: 15698083 [TBL] [Abstract][Full Text] [Related]
6. Phase space localization of chaotic eigenstates: violating ergodicity. Lakshminarayan A; Cerruti NR; Tomsovic S Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jan; 63(1 Pt 2):016209. PubMed ID: 11304337 [TBL] [Abstract][Full Text] [Related]
7. Exact relations between homoclinic and periodic orbit actions in chaotic systems. Li J; Tomsovic S Phys Rev E; 2018 Feb; 97(2-1):022216. PubMed ID: 29548081 [TBL] [Abstract][Full Text] [Related]
9. Exact decomposition of homoclinic orbit actions in chaotic systems: Information reduction. Li J; Tomsovic S Phys Rev E; 2019 Mar; 99(3-1):032212. PubMed ID: 30999433 [TBL] [Abstract][Full Text] [Related]
10. Signatures of homoclinic motion in quantum chaos. Wisniacki DA; Vergini E; Benito RM; Borondo F Phys Rev Lett; 2005 Feb; 94(5):054101. PubMed ID: 15783643 [TBL] [Abstract][Full Text] [Related]
11. Impact of chaos on precursors of quantum criticality. GarcĂa-Mata I; Vergini E; Wisniacki DA Phys Rev E; 2021 Dec; 104(6):L062202. PubMed ID: 35030879 [TBL] [Abstract][Full Text] [Related]
12. Diffraction and tunneling in systems with mixed phase space. Ishikawa A; Tanaka A; Ikeda KS; Shudo A Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Sep; 86(3 Pt 2):036208. PubMed ID: 23030998 [TBL] [Abstract][Full Text] [Related]
13. Influence of classical resonances on chaotic tunneling. Mouchet A; Eltschka C; Schlagheck P Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Aug; 74(2 Pt 2):026211. PubMed ID: 17025529 [TBL] [Abstract][Full Text] [Related]
14. Semiclassical trace formulas for pitchfork bifurcation sequences. Kaidel J; Brack M Phys Rev E Stat Nonlin Soft Matter Phys; 2004; 70(1 Pt 2):016206. PubMed ID: 15324151 [TBL] [Abstract][Full Text] [Related]
15. Exploring phase space localization of chaotic eigenstates via parametric variation. Cerruti NR; Lakshminarayan A; Lefebvre JH; Tomsovic S Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jan; 63(1 Pt 2):016208. PubMed ID: 11304336 [TBL] [Abstract][Full Text] [Related]
16. Semiclassical Identification of Periodic Orbits in a Quantum Many-Body System. Akila M; Waltner D; Gutkin B; Braun P; Guhr T Phys Rev Lett; 2017 Apr; 118(16):164101. PubMed ID: 28474905 [TBL] [Abstract][Full Text] [Related]
17. Semiclassical description of resonance-assisted tunneling in one-dimensional integrable models. Le Deunff J; Mouchet A; Schlagheck P Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Oct; 88(4):042927. PubMed ID: 24229269 [TBL] [Abstract][Full Text] [Related]
18. Signatures of dynamical tunneling in semiclassical quantum dots. Ramamoorthy A; Akis R; Bird JP; Maemoto T; Ferry DK; Inoue M Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Aug; 68(2 Pt 2):026221. PubMed ID: 14525098 [TBL] [Abstract][Full Text] [Related]
19. Complex trajectories in chaotic dynamical tunneling. Levkov DG; Panin AG; Sibiryakov SM Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Oct; 76(4 Pt 2):046209. PubMed ID: 17995084 [TBL] [Abstract][Full Text] [Related]
20. Periodic motions and homoclinic orbits in a discontinuous dynamical system on a single domain with multiple vector fields. Guo S; Luo ACJ Chaos; 2022 Mar; 32(3):033132. PubMed ID: 35364824 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]