These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 14682943)

  • 1. Microstructure evolution in magnetorheological suspensions governed by Mason number.
    Melle S; Calderón OG; Rubio MA; Fuller GG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Oct; 68(4 Pt 1):041503. PubMed ID: 14682943
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polarizable particle aggregation under rotating magnetic fields using scattering dichroism.
    Melle S; Calderón OG; Fuller GG; Rubio MA
    J Colloid Interface Sci; 2002 Mar; 247(1):200-9. PubMed ID: 16290457
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rheological study of two-dimensional very anisometric colloidal particle suspensions: from shear-induced orientation to viscous dissipation.
    Philippe AM; Baravian C; Bezuglyy V; Angilella JR; Meneau F; Bihannic I; Michot LJ
    Langmuir; 2013 Apr; 29(17):5315-24. PubMed ID: 23544905
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rheology of non-Brownian suspensions.
    Denn MM; Morris JF
    Annu Rev Chem Biomol Eng; 2014; 5():203-28. PubMed ID: 24655134
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enzymatic preparation of hollow magnetite microspheres for hyperthermic treatment of cancer.
    Kawashita M; Sadaoka K; Kokubo T; Saito T; Takano M; Araki N; Hiraoka M
    J Mater Sci Mater Med; 2006 Jul; 17(7):605-10. PubMed ID: 16770544
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oscillatory shear response of dilute ferrofluids: predictions from rotational Brownian dynamics simulations and ferrohydrodynamics modeling.
    Soto-Aquino D; Rosso D; Rinaldi C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Nov; 84(5 Pt 2):056306. PubMed ID: 22181497
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct numerical simulations for non-Newtonian rheology of concentrated particle dispersions.
    Iwashita T; Yamamoto R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Dec; 80(6 Pt 1):061402. PubMed ID: 20365170
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Study of the magnetorheological response of aqueous magnetite suspensions stabilized by acrylic acid polymers.
    Viota JL; Delgado AV; Arias JL; Durán JD
    J Colloid Interface Sci; 2008 Aug; 324(1-2):199-204. PubMed ID: 18533174
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The giant electrorheological effect in suspensions of nanoparticles.
    Wen W; Huang X; Yang S; Lu K; Sheng P
    Nat Mater; 2003 Nov; 2(11):727-30. PubMed ID: 14528296
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preparation of ferrimagnetic magnetite microspheres for in situ hyperthermic treatment of cancer.
    Kawashita M; Tanaka M; Kokubo T; Inoue Y; Yao T; Hamada S; Shinjo T
    Biomaterials; 2005 May; 26(15):2231-8. PubMed ID: 15585224
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modified Mason number for charged paramagnetic colloidal suspensions.
    Du D; Hilou E; Biswal SL
    Phys Rev E; 2016 Jun; 93(6):062603. PubMed ID: 27415316
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Factors affecting the rheology and processability of highly filled suspensions.
    Kalyon DM; Aktaş S
    Annu Rev Chem Biomol Eng; 2014; 5():229-54. PubMed ID: 24910916
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A viscoelastic model of phagosome motion within cells based on cytomagnetometric measurements.
    Nemoto I; Moeller W
    IEEE Trans Biomed Eng; 2000 Feb; 47(2):170-82. PubMed ID: 10721624
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interparticle interactions in concentrated suspensions and their bulk (rheological) properties.
    Tadros T
    Adv Colloid Interface Sci; 2011 Oct; 168(1-2):263-77. PubMed ID: 21632031
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nonequilibrium condensation and coarsening of field-driven dipolar colloids.
    Jäger S; Schmidle H; Klapp SH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jul; 86(1 Pt 1):011402. PubMed ID: 23005412
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Behavior of nanoparticle clouds around a magnetized microsphere under magnetic and flow fields.
    Magnet C; Kuzhir P; Bossis G; Meunier A; Nave S; Zubarev A; Lomenech C; Bashtovoi V
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Mar; 89(3):032310. PubMed ID: 24730845
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamics of rotating paramagnetic particles simulated by lattice Boltzmann and particle dynamics methods.
    Yadav A; Calhoun R; Phelan PE; Vuppu AK; Garcia AA; Hayes M
    IEE Proc Nanobiotechnol; 2006 Dec; 153(6):145-50. PubMed ID: 17187446
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Film depth and concentration banding in free-surface Couette flow of a suspension.
    Timberlake BD; Morris JF
    Philos Trans A Math Phys Eng Sci; 2003 May; 361(1806):895-910. PubMed ID: 12804220
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of extremely-low-frequency magnetic fields on biological magnetite.
    Polk C
    Bioelectromagnetics; 1994; 15(3):261-70. PubMed ID: 8074740
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Brownian dynamics simulation of rigid particles of arbitrary shape in external fields.
    Fernandes MX; de la Torre JG
    Biophys J; 2002 Dec; 83(6):3039-48. PubMed ID: 12496076
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.