These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 14682982)

  • 61. Thickness of the diffusive sublayer in turbulent convection.
    du Puits R; Resagk C; Thess A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jan; 81(1 Pt 2):016307. PubMed ID: 20365460
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Efficient algorithm on a nonstaggered mesh for simulating Rayleigh-Bénard convection in a box.
    Chiam KH; Lai MC; Greenside HS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Aug; 68(2 Pt 2):026705. PubMed ID: 14525146
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Effect of the Heat Pipe Adiabatic Region.
    Brahim T; Jemni A
    J Heat Transfer; 2014 Apr; 136(4):0429011-4290110. PubMed ID: 24895467
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Smoothed particle hydrodynamics simulations of evaporation and explosive boiling of liquid drops in microgravity.
    Sigalotti LD; Troconis J; Sira E; Peña-Polo F; Klapp J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jul; 92(1):013021. PubMed ID: 26274283
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Buoyant Convection Computed in a Vorticity, Stream-Function Formulation.
    Rehm RG; Baum HR; Barnett PD
    J Res Natl Bur Stand (1977); 1982; 87(2):165-185. PubMed ID: 34566079
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Measurements of the local convective heat flux in turbulent Rayleigh-Bénard convection.
    Shang XD; Qiu XL; Tong P; Xia KQ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Aug; 70(2 Pt 2):026308. PubMed ID: 15447589
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Absolute and convective instabilities of natural convection flow in boundary-layer regime.
    Tao J; Le Quéré P; Xin S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Dec; 70(6 Pt 2):066311. PubMed ID: 15697506
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Predrying transition on a hydrophobic surface: statics and dynamics.
    Teshigawara R; Onuki A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Oct; 84(4 Pt 1):041602. PubMed ID: 22181146
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Transient electrokinetic transport in a finite length microchannel: currents, capacitance, and an electrical analogy.
    Mansouri A; Bhattacharjee S; Kostiuk LW
    J Phys Chem B; 2007 Nov; 111(44):12834-43. PubMed ID: 17929961
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Possibility of long-distance heat transport in weightlessness using supercritical fluids.
    Beysens D; Chatain D; Nikolayev VS; Ouazzani J; Garrabos Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Dec; 82(6 Pt 1):061126. PubMed ID: 21230663
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Influence of dielectrical heating on convective flow in a radial force field.
    Travnikov V; Zaussinger F; Haun P; Egbers C
    Phys Rev E; 2020 May; 101(5-1):053106. PubMed ID: 32575176
    [TBL] [Abstract][Full Text] [Related]  

  • 72. A perturbation method for the Ornstein-Zernike equation and the generic van der Waals equation of state for a square well potential model.
    Eu BC; Qin Y
    J Phys Chem B; 2007 Apr; 111(14):3716-26. PubMed ID: 17388524
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Dipole fluid as a basic model for the equation of state of ionic liquids in the vicinity of their critical point.
    Kulinskii VL; Malomuzh NP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jan; 67(1 Pt 1):011501. PubMed ID: 12636500
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Numerical Simulation of the Impact of the Heat Source Position on Melting of a Nano-Enhanced Phase Change Material.
    Bouzennada T; Mechighel F; Ghachem K; Kolsi L
    Nanomaterials (Basel); 2021 May; 11(6):. PubMed ID: 34071434
    [TBL] [Abstract][Full Text] [Related]  

  • 75. On Transformation Form-Invariance in Thermal Convection.
    Dai G; Wang J
    Materials (Basel); 2022 Dec; 16(1):. PubMed ID: 36614714
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Perturbation-controlled numerical simulations of the convection onset in a supercritical fluid layer.
    Accary G; Meyer H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Oct; 74(4 Pt 2):046308. PubMed ID: 17155174
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Velocity and temperature field characteristics of water and air during natural convection heating in cans.
    Erdogdu F; Tutar M
    J Food Sci; 2011; 76(1):E119-29. PubMed ID: 21535663
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Molecular to fluid dynamics: the consequences of stochastic molecular motion.
    Heinz S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Sep; 70(3 Pt 2):036308. PubMed ID: 15524634
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Dynamic van der Waals theory.
    Onuki A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Mar; 75(3 Pt 2):036304. PubMed ID: 17500788
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Heat flux sensors for infrared thermography in convective heat transfer.
    Carlomagno GM; de Luca L; Cardone G; Astarita T
    Sensors (Basel); 2014 Nov; 14(11):21065-116. PubMed ID: 25386758
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.