These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 14683004)

  • 1. Spectra of complex networks.
    Dorogovtsev SN; Goltsev AV; Mendes JF; Samukhin AN
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Oct; 68(4 Pt 2):046109. PubMed ID: 14683004
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Laplacian spectra of, and random walks on, complex networks: are scale-free architectures really important?
    Samukhin AN; Dorogovtsev SN; Mendes JF
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Mar; 77(3 Pt 2):036115. PubMed ID: 18517469
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spectra of "real-world" graphs: beyond the semicircle law.
    Farkas IJ; Derényi I; Barabási AL; Vicsek T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Aug; 64(2 Pt 2):026704. PubMed ID: 11497741
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Laplacian spectra of recursive treelike small-world polymer networks: analytical solutions and applications.
    Liu H; Zhang Z
    J Chem Phys; 2013 Mar; 138(11):114904. PubMed ID: 23534659
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Degree-dependent intervertex separation in complex networks.
    Dorogovtsev SN; Mendes JF; Oliveira JG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 May; 73(5 Pt 2):056122. PubMed ID: 16803013
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computational complexity arising from degree correlations in networks.
    Vázquez A; Weigt M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Feb; 67(2 Pt 2):027101. PubMed ID: 12636856
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recursive solutions for Laplacian spectra and eigenvectors of a class of growing treelike networks.
    Zhang Z; Qi Y; Zhou S; Lin Y; Guan J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jul; 80(1 Pt 2):016104. PubMed ID: 19658771
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamical scaling behavior of percolation clusters in scale-free networks.
    Jasch F; von Ferber Ch; Blumen A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004; 70(1 Pt 2):016112. PubMed ID: 15324134
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Random graphs with arbitrary degree distributions and their applications.
    Newman ME; Strogatz SH; Watts DJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Aug; 64(2 Pt 2):026118. PubMed ID: 11497662
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Generation of uncorrelated random scale-free networks.
    Catanzaro M; Boguñá M; Pastor-Satorras R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Feb; 71(2 Pt 2):027103. PubMed ID: 15783457
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cavity approach for the approximation of spectral density of graphs with heterogeneous structures.
    Guzman GEC; Stadler PF; Fujita A
    Phys Rev E; 2024 Mar; 109(3-1):034303. PubMed ID: 38632720
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Network robustness and fragility: percolation on random graphs.
    Callaway DS; Newman ME; Strogatz SH; Watts DJ
    Phys Rev Lett; 2000 Dec; 85(25):5468-71. PubMed ID: 11136023
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Properties of dense partially random graphs.
    Risau-Gusman S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Nov; 70(5 Pt 2):056127. PubMed ID: 15600712
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spectra of random graphs with arbitrary expected degrees.
    Nadakuditi RR; Newman ME
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):012803. PubMed ID: 23410384
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Belief-propagation algorithm and the Ising model on networks with arbitrary distributions of motifs.
    Yoon S; Goltsev AV; Dorogovtsev SN; Mendes JF
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Oct; 84(4 Pt 1):041144. PubMed ID: 22181124
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimal paths in complex networks with correlated weights: the worldwide airport network.
    Wu Z; Braunstein LA; Colizza V; Cohen R; Havlin S; Stanley HE
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Nov; 74(5 Pt 2):056104. PubMed ID: 17279965
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spectral analysis and the dynamic response of complex networks.
    de Aguiar MA; Bar-Yam Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jan; 71(1 Pt 2):016106. PubMed ID: 15697657
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Geometric fractal growth model for scale-free networks.
    Jung S; Kim S; Kahng B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 May; 65(5 Pt 2):056101. PubMed ID: 12059641
    [TBL] [Abstract][Full Text] [Related]  

  • 19. k-core percolation on multiplex networks.
    Azimi-Tafreshi N; Gómez-Gardeñes J; Dorogovtsev SN
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Sep; 90(3):032816. PubMed ID: 25314490
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling the evolution of weighted networks.
    Barrat A; Barthélemy M; Vespignani A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Dec; 70(6 Pt 2):066149. PubMed ID: 15697476
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.