These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 14683018)

  • 1. Multicanonical Monte Carlo study and analysis of tails for the order-parameter distribution of the two-dimensional Ising model.
    Hilfer R; Biswal B; Mattutis HG; Janke W
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Oct; 68(4 Pt 2):046123. PubMed ID: 14683018
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Verification of Ising phase transitions in the three-dimensional Ashkin-Teller model using Monte Carlo simulations.
    Szukowski G; Kamieniarz G; Musiał G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Mar; 77(3 Pt 1):031124. PubMed ID: 18517346
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Alternative boundary conditions for Monte Carlo simulations based on self-consistent correlations: application to the two- and three-dimensional Ising models.
    Etxebarria I; Capillas C; Elcoro L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Mar; 81(3 Pt 2):036703. PubMed ID: 20365900
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-resolution Monte Carlo study of the order-parameter distribution of the three-dimensional Ising model.
    Xu J; Ferrenberg AM; Landau DP
    Phys Rev E; 2020 Feb; 101(2-1):023315. PubMed ID: 32168706
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Universality class of the two-dimensional site-diluted Ising model.
    Martins PH; Plascak JA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jul; 76(1 Pt 1):012102. PubMed ID: 17677515
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Determining the density of states for classical statistical models: a random walk algorithm to produce a flat histogram.
    Wang F; Landau DP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Nov; 64(5 Pt 2):056101. PubMed ID: 11736008
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Diversity of critical behavior within a universality class.
    Dohm V
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jun; 77(6 Pt 1):061128. PubMed ID: 18643238
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Overlap distribution of the three-dimensional Ising model.
    Berg BA; Billoire A; Janke W
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Oct; 66(4 Pt 2):046122. PubMed ID: 12443274
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamic phase transition, universality, and finite-size scaling in the two-dimensional kinetic Ising model in an oscillating field.
    Korniss G; White CJ; Rikvold PA; Novotny MA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jan; 63(1 Pt 2):016120. PubMed ID: 11304327
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Universal features and tail analysis of the order-parameter distribution of the two-dimensional Ising model: an entropic sampling Monte Carlo study.
    Malakis A; Fytas NG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 May; 73(5 Pt 2):056114. PubMed ID: 16803005
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Critical properties of the Ising model in hyperbolic space.
    Breuckmann NP; Placke B; Roy A
    Phys Rev E; 2020 Feb; 101(2-1):022124. PubMed ID: 32168633
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Probability distribution of the order parameter for the three-dimensional ising-model universality class: A high-precision monte carlo study.
    Tsypin MM; Blote HW
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Jul; 62(1 Pt A):73-6. PubMed ID: 11088436
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional form of the Parisi overlap distribution for the three-dimensional Edwards-Anderson Ising spin glass.
    Berg BA; Billoire A; Janke W
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Apr; 65(4 Pt 2A):045102. PubMed ID: 12005902
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Finite-size effects in film geometry with nonperiodic boundary conditions: Gaussian model and renormalization-group theory at fixed dimension.
    Kastening B; Dohm V
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jun; 81(6 Pt 1):061106. PubMed ID: 20866377
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phase transition of a one-dimensional Ising model with distance-dependent connections.
    Chang Y; Sun L; Cai X
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Aug; 76(2 Pt 1):021101. PubMed ID: 17930000
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Universality of the Ising and the S=1 model on Archimedean lattices: a Monte Carlo determination.
    Malakis A; Gulpinar G; Karaaslan Y; Papakonstantinou T; Aslan G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Mar; 85(3 Pt 1):031146. PubMed ID: 22587077
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Curvature-driven coarsening in the two-dimensional Potts model.
    Loureiro MP; Arenzon JJ; Cugliandolo LF; Sicilia A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Feb; 81(2 Pt 1):021129. PubMed ID: 20365552
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aspect-ratio dependence of thermodynamic Casimir forces.
    Hucht A; Grüneberg D; Schmidt FM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 May; 83(5 Pt 1):051101. PubMed ID: 21728484
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Parallel multicanonical study of the three-dimensional Blume-Capel model.
    Zierenberg J; Fytas NG; Janke W
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Mar; 91(3):032126. PubMed ID: 25871073
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nematic phase in the J(1)-J(2) square-lattice Ising model in an external field.
    Guerrero AI; Stariolo DA; Almarza NG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 May; 91(5):052123. PubMed ID: 26066135
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.