These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
111 related articles for article (PubMed ID: 14683021)
21. Evolving networks by merging cliques. Takemoto K; Oosawa C Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Oct; 72(4 Pt 2):046116. PubMed ID: 16383477 [TBL] [Abstract][Full Text] [Related]
22. Nonequilibrium phase transitions and finite-size scaling in weighted scale-free networks. Karsai M; Juhász R; Iglói F Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Mar; 73(3 Pt 2):036116. PubMed ID: 16605607 [TBL] [Abstract][Full Text] [Related]
23. Mean-field approximation for the Sznajd model in complex networks. Araújo MS; Vannucchi FS; Timpanaro AM; Prado CP Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Feb; 91(2):022813. PubMed ID: 25768558 [TBL] [Abstract][Full Text] [Related]
24. Link-space formalism for network analysis. Smith DM; Lee CF; Onnela JP; Johnson NF Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Mar; 77(3 Pt 2):036112. PubMed ID: 18517466 [TBL] [Abstract][Full Text] [Related]
25. Features and heterogeneities in growing network models. Ferretti L; Cortelezzi M; Yang B; Marmorini G; Bianconi G Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jun; 85(6 Pt 2):066110. PubMed ID: 23005165 [TBL] [Abstract][Full Text] [Related]
26. Reshuffling scale-free networks: from random to assortative. Xulvi-Brunet R; Sokolov IM Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Dec; 70(6 Pt 2):066102. PubMed ID: 15697429 [TBL] [Abstract][Full Text] [Related]
27. Spread of information and infection on finite random networks. Isham V; Kaczmarska J; Nekovee M Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Apr; 83(4 Pt 2):046128. PubMed ID: 21599261 [TBL] [Abstract][Full Text] [Related]
29. Hidden variables in bipartite networks. Kitsak M; Krioukov D Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Aug; 84(2 Pt 2):026114. PubMed ID: 21929071 [TBL] [Abstract][Full Text] [Related]
30. Structure of shells in complex networks. Shao J; Buldyrev SV; Braunstein LA; Havlin S; Stanley HE Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Sep; 80(3 Pt 2):036105. PubMed ID: 19905178 [TBL] [Abstract][Full Text] [Related]
31. Correlations in scale-free networks: tomography and percolation. Xulvi-Brunet R; Pietsch W; Sokolov IM Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Sep; 68(3 Pt 2):036119. PubMed ID: 14524844 [TBL] [Abstract][Full Text] [Related]
32. Random initial condition in small Barabasi-Albert networks and deviations from the scale-free behavior. Guimarães PR; de Aguiar MA; Bascompte J; Jordano P; dos Reis SF Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Mar; 71(3 Pt 2B):037101. PubMed ID: 15903635 [TBL] [Abstract][Full Text] [Related]
33. Statistical-mechanical iterative algorithms on complex networks. Ohkubo J; Yasuda M; Tanaka K Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Oct; 72(4 Pt 2):046135. PubMed ID: 16383496 [TBL] [Abstract][Full Text] [Related]
34. Effect of aging on network structure. Zhu H; Wang X; Zhu JY Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Nov; 68(5 Pt 2):056121. PubMed ID: 14682860 [TBL] [Abstract][Full Text] [Related]
35. Evolving network with different edges. Sun J; Ge Y; Li S Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Oct; 76(4 Pt 2):046108. PubMed ID: 17995061 [TBL] [Abstract][Full Text] [Related]
36. Finite-size effects in Barabási-Albert growing networks. Waclaw B; Sokolov IM Phys Rev E Stat Nonlin Soft Matter Phys; 2007 May; 75(5 Pt 2):056114. PubMed ID: 17677140 [TBL] [Abstract][Full Text] [Related]
37. Markov chain-based numerical method for degree distributions of growing networks. Shi D; Chen Q; Liu L Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Mar; 71(3 Pt 2A):036140. PubMed ID: 15903526 [TBL] [Abstract][Full Text] [Related]
38. Linear relation on the correlation in complex networks. Ma CW; Szeto KY Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Apr; 73(4 Pt 2):047101. PubMed ID: 16711951 [TBL] [Abstract][Full Text] [Related]
39. Quantitative description and modeling of real networks. Capocci A; Caldarelli G; De los Rios P Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Oct; 68(4 Pt 2):047101. PubMed ID: 14683082 [TBL] [Abstract][Full Text] [Related]
40. Ring structures and mean first passage time in networks. Baronchelli A; Loreto V Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Feb; 73(2 Pt 2):026103. PubMed ID: 16605394 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]