These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 14683081)

  • 21. Onset of turbulence in accelerated high-Reynolds-number flow.
    Zhou Y; Robey HF; Buckingham AC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 May; 67(5 Pt 2):056305. PubMed ID: 12786270
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Consistent lattice Boltzmann schemes for the Brinkman model of porous flow and infinite Chapman-Enskog expansion.
    Ginzburg I
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jun; 77(6 Pt 2):066704. PubMed ID: 18643394
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Coupled double-distribution-function lattice Boltzmann method for the compressible Navier-Stokes equations.
    Li Q; He YL; Wang Y; Tao WQ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Nov; 76(5 Pt 2):056705. PubMed ID: 18233788
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A nonperturbative approximation for the moderate Reynolds number Navier-Stokes equations.
    Roper M; Brenner MP
    Proc Natl Acad Sci U S A; 2009 Mar; 106(9):2977-82. PubMed ID: 19211800
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Alternative method to construct equilibrium distribution functions in lattice-Boltzmann method simulation of inviscid compressible flows at high Mach number.
    Qu K; Shu C; Chew YT
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Mar; 75(3 Pt 2):036706. PubMed ID: 17500825
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Density-driven instabilities of variable-viscosity miscible fluids in a capillary tube.
    Meiburg E; Vanaparthy SH; Payr MD; Wilhelm D
    Ann N Y Acad Sci; 2004 Nov; 1027():383-402. PubMed ID: 15644370
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Molecular viscosity and diffusivity effects in transitional and shock-driven mixing flows.
    Pereira FS; Grinstein FF; Israel DM; Rauenzahn R
    Phys Rev E; 2021 Jan; 103(1-1):013106. PubMed ID: 33601565
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Impact of the inherent separation of scales in the Navier-Stokes- alphabeta equations.
    Kim TY; Cassiani M; Albertson JD; Dolbow JE; Fried E; Gurtin ME
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Apr; 79(4 Pt 2):045307. PubMed ID: 19518292
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Flow past an impulsively started circular cylinder using a higher-order semicompact scheme.
    Sanyasiraju YV; Manjula V
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jul; 72(1 Pt 2):016709. PubMed ID: 16090136
    [TBL] [Abstract][Full Text] [Related]  

  • 30. On the control of the chaotic attractors of the 2-d Navier-Stokes equations.
    Smaoui N; Zribi M
    Chaos; 2017 Mar; 27(3):033111. PubMed ID: 28364770
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Highly turbulent solutions of the Lagrangian-averaged Navier-Stokes alpha model and their large-eddy-simulation potential.
    Pietarila Graham J; Holm DD; Mininni PD; Pouquet A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Nov; 76(5 Pt 2):056310. PubMed ID: 18233759
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The density ratio dependence of self-similar Rayleigh-Taylor mixing.
    Youngs DL
    Philos Trans A Math Phys Eng Sci; 2013 Nov; 371(2003):20120173. PubMed ID: 24146005
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Statistical-mechanical predictions and Navier-Stokes dynamics of two-dimensional flows on a bounded domain.
    Brands H; Maassen SR; Clercx HJ
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Sep; 60(3):2864-74. PubMed ID: 11970092
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Fast acoustic streaming in standing waves: generation of an additional outer streaming cell.
    Reyt I; Daru V; Bailliet H; Moreau S; Valière JC; Baltean-Carlès D; Weisman C
    J Acoust Soc Am; 2013 Sep; 134(3):1791-801. PubMed ID: 23967913
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Thermal nonlinear oscillator in mixed convection.
    Martínez-Suástegui L; Treviño C; Cajas JC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Oct; 84(4 Pt 2):046310. PubMed ID: 22181264
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Integrated computation of finite-time Lyapunov exponent fields during direct numerical simulation of unsteady flows.
    Finn J; Apte SV
    Chaos; 2013 Mar; 23(1):013145. PubMed ID: 23556982
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Additional interfacial force in lattice Boltzmann models for incompressible multiphase flows.
    Li Q; Luo KH; Gao YJ; He YL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Feb; 85(2 Pt 2):026704. PubMed ID: 22463354
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Direct numerical simulation of a near-field particle-laden plane turbulent jet.
    Fan J; Luo K; Ha MY; Cen K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Aug; 70(2 Pt 2):026303. PubMed ID: 15447584
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Microscale Gaseous Slip Flow in the Insect Trachea and Tracheoles.
    Simelane SM; Abelman S; Duncan FD
    Acta Biotheor; 2017 Sep; 65(3):211-231. PubMed ID: 28695410
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Compact computations based on a stream-function-velocity formulation of two-dimensional steady laminar natural convection in a square cavity.
    Yu PX; Tian ZF
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Mar; 85(3 Pt 2):036703. PubMed ID: 22587205
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.